scispace - formally typeset
Search or ask a question
Journal ArticleDOI

State of the Art of Finite Control Set Model Predictive Control in Power Electronics

TL;DR: The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics.
Abstract: This paper addresses to some of the latest contributions on the application of Finite Control Set Model Predictive Control (FCS-MPC) in Power Electronics. In FCS-MPC , the switching states are directly applied to the power converter, without the need of an additional modulation stage. The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics. Some applications of this technology in drives, active filters, power conditioning, distributed generation and renewable energy are covered. Finally, attention is paid to the discussion of new trends in this technology and to the identification of open questions and future research topics.
Citations
More filters
Journal ArticleDOI
TL;DR: The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm.
Abstract: Model predictive control (MPC) is a very attractive solution for controlling power electronic converters. The aim of this paper is to present and discuss the latest developments in MPC for power converters and drives, describing the current state of this control strategy and analyzing the new trends and challenges it presents when applied to power electronic systems. The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm. This paper summarizes the most recent research concerning these elements, providing details about the different solutions proposed by the academic and industrial communities.

1,283 citations


Cites background from "State of the Art of Finite Control ..."

  • ...standard control hardware platforms [8]–[11]....

    [...]

  • ...5 can be chosen for the motor drive application [8]....

    [...]

Journal ArticleDOI
TL;DR: Model-based predictive control (MPC) for power converters and drives is a control technique that has gained attention in the research community as mentioned in this paper, and it can easily handle multivariable case and system constraints and nonlinearities in a very intuitive way.
Abstract: Model-based predictive control (MPC) for power converters and drives is a control technique that has gained attention in the research community. The main reason for this is that although MPC presents high computational burden, it can easily handle multivariable case and system constraints and nonlinearities in a very intuitive way. Taking advantage of that, MPC has been successfully used for different applications such as an active front end (AFE), power converters connected to resistor inductor RL loads, uninterruptible power supplies, and high-performance drives for induction machines, among others. This article provides a review of the application of MPC in the power electronics area.

917 citations


Cites background or methods from "State of the Art of Finite Control ..."

  • ...Now, predictive control is being considered in other areas, such as power electronics and drives [3]–[6]....

    [...]

  • ...This technique has been extensively used for power converters due to the finite number of switching states they present [6]....

    [...]

Journal ArticleDOI
18 May 2015
TL;DR: The most successful generator-converter configurations are addressed along with few promising topologies available in the literature from the market based survey, and the past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory.
Abstract: This paper presents a comprehensive study on the state-of-the-art and emerging wind energy technologies from the electrical engineering perspective. In an attempt to decrease cost of energy, increase the wind energy conversion efficiency, reliability, power density, and comply with the stringent grid codes, the electric generators and power electronic converters have emerged in a rigorous manner. From the market based survey, the most successful generator-converter configurations are addressed along with few promising topologies available in the literature. The back-to-back connected converters, passive generator-side converters, converters for multiphase generators, and converters without intermediate dc-link are investigated for high-power wind energy conversion systems (WECS), and presented in low and medium voltage category. The onshore and offshore wind farm configurations are analyzed with respect to the series/parallel connection of wind turbine ac/dc output terminals, and high voltage ac/dc transmission. The fault-ride through compliance methods used in the induction and synchronous generator based WECS are also discussed. The past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory. The important survey results, and technical merits and demerits of various WECS electrical systems are summarized by tables. The list of current and future wind turbines are also provided along with technical details.

694 citations


Cites methods from "State of the Art of Finite Control ..."

  • ...energy systems, and this method eliminates the need for linear regulators and modulators [70], [266]....

    [...]

Journal ArticleDOI
TL;DR: In this article, an efficient optimization algorithm for direct model predictive control with reference tracking of the converter current is proposed. But the computational burden of the algorithm is independent of the number of converter output levels, the concept is particularly suitable for multi-level topologies with a large number of voltage levels.
Abstract: For direct model predictive control with reference tracking of the converter current, we derive an efficient optimization algorithm that allows us to solve the control problem for very long prediction horizons. This is achieved by adapting sphere decoding principles to the underlying optimization problem. The proposed algorithm requires only few computations and directly provides the optimal switch positions. Since the computational burden of our algorithm is effectively independent of the number of converter output levels, the concept is particularly suitable for multi-level topologies with a large number of voltage levels. Our method is illustrated for the case of a variable speed drive system with a three-level voltage source converter.

409 citations


Cites background or methods from "State of the Art of Finite Control ..."

  • ...When tracking the current reference in MPC and directly sett ing the converter switch positions without the use of a modulator, a horizon of N = 1 is almost universally used [2]–[4]....

    [...]

  • ...For direct MPC with reference tracking, this combinatorial exp losion has to date , in effect, limited the length of implementable prediction horizons to one [3], [4]....

    [...]

Journal ArticleDOI
TL;DR: The development of MMC circuit topologies and their mathematical models over the years are presented and the evolution and technical challenges of the classical and model predictive control methods are discussed.
Abstract: Modular multilevel converter (MMC) is one of the most promising topologies for medium to high-voltage high-power applications. The main features of MMC are modularity, voltage and power scalability, fault tolerant and transformer-less operation, and high-quality output waveforms. Over the past few years, several research studies are conducted to address the technical challenges associated with the operation and control of the MMC. This paper presents the development of MMC circuit topologies and their mathematical models over the years. Also, the evolution and technical challenges of the classical and model predictive control methods are discussed. Finally, the MMC applications and their future trends are presented.

404 citations


Cites background from "State of the Art of Finite Control ..."

  • ...Other interesting features of MPC are a fast dynamic response, smaller steady-state error in comparison to the classical control methods, ease of handling a control delay, robustness against the system parameter variation [178]–[180]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, a theoretical basis for model predictive control (MPC) has started to emerge and many practical problems like control objective prioritization and symptom-aided diagnosis can be integrated into the MPC framework by expanding the problem formulation to include integer variables yielding a mixed-integer quadratic or linear program.

2,320 citations

Journal ArticleDOI
TL;DR: The feasibility and great potential of FCS-MPC due to present-day signal-processing capabilities, particularly for power systems with a reduced number of switching states and more complex operating principles, such as matrix converters are found.
Abstract: This paper presents a detailed description of finite control set model predictive control (FCS-MPC) applied to power converters Several key aspects related to this methodology are, in depth, presented and compared with traditional power converter control techniques, such as linear controllers with pulsewidth-modulation-based methods The basic concepts, operating principles, control diagrams, and results are used to provide a comparison between the different control strategies The analysis is performed on a traditional three-phase voltage source inverter, used as a simple and comprehensive reference frame However, additional topologies and power systems are addressed to highlight differences, potentialities, and challenges of FCS-MPC Among the conclusions are the feasibility and great potential of FCS-MPC due to present-day signal-processing capabilities, particularly for power systems with a reduced number of switching states and more complex operating principles, such as matrix converters In addition, the possibility to address different or additional control objectives easily in a single cost function enables a simple, flexible, and improved performance controller for power-conversion systems

1,554 citations

Journal ArticleDOI
TL;DR: A simple classification of the most important types of predictive control is introduced, and each one of them is explained including some application examples.
Abstract: Predictive control is a very wide class of controllers that have found rather recent application in the control of power converters. Research on this topic has been increased in the last years due to the possibilities of today's microprocessors used for the control. This paper presents the application of different predictive control methods to power electronics and drives. A simple classification of the most important types of predictive control is introduced, and each one of them is explained including some application examples. Predictive control presents several advantages that make it suitable for the control of power converters and drives. The different control schemes and applications presented in this paper illustrate the effectiveness and flexibility of predictive control.

1,389 citations

Journal ArticleDOI
TL;DR: The results show that the predictive method controls very effectively the load current and performs very well compared with the classical solutions.
Abstract: This paper presents a predictive current control method and its application to a voltage source inverter. The method uses a discrete-time model of the system to predict the future value of the load current for all possible voltage vectors generated by the inverter. The voltage vector which minimizes a quality function is selected. The quality function used in this work evaluates the current error at the next sampling time. The performance of the proposed predictive control method is compared with hysteresis and pulsewidth modulation control. The results show that the predictive method controls very effectively the load current and performs very well compared with the classical solutions

1,387 citations


"State of the Art of Finite Control ..." refers background in this paper

  • ...However, due to the redundancy of vectors and , the finite control set of different voltage vectors contains only seven elements....

    [...]

  • ...In recent years, a considerable effort has been made towards the validation of predictive-based control schemes in power electronics and drives by comparing their performance with that of industry-standard controllers....

    [...]

Proceedings ArticleDOI
18 Nov 2008
TL;DR: In this article, a Powerpoint presentation on predictive control in power electronics and drives is presented, where the areas discussed include predictive control, power electronics, power drive, cascaded control structure, nonlinear control system, switching system, etc.
Abstract: The article consists of a Powerpoint presentation on predictive control in power electronics and drives. The areas discussed include: predictive control; power electronics; power drive; cascaded control structure; nonlinear control system; switching system; etc. etc.

1,073 citations