scispace - formally typeset
Search or ask a question
Journal ArticleDOI

State of the art of structural control

01 Jul 2003-Journal of Structural Engineering-asce (American Society of Civil Engineers (ASCE))-Vol. 129, Iss: 7, pp 845-856
TL;DR: In this paper, the authors review the recent and rapid developments in semi-active structural control and its implementation in full-scale structures, and present an alternative to active and hybrid control for structural vibration reduction.
Abstract: In recent years, considerable attention has been paid to research and development of structural control devices, with particular emphasis on alleviation of wind and seismic response of buildings and bridges. In both areas, serious efforts have been undertaken in the last two decades to develop the structural control concept into a workable technology. Full-scale implementation of active control systems have been accomplished in several structures, mainly in Japan; however, cost effectiveness and reliability considerations have limited their wide spread acceptance. Because of their mechanical simplicity, low power requirements, and large, controllable force capacity, semiactive systems provide an attractive alternative to active and hybrid control systems for structural vibration reduction. In this paper we review the recent and rapid developments in semiactive structural control and its implementation in full-scale structures.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a brief survey on some of the most relevant developments in the field of optimization under uncertainty, including reliability-based optimization, robust design optimization and model updating.

487 citations

Journal ArticleDOI
TL;DR: In this article, a tuned viscous mass damper (TVMD) was proposed for building systems, which uses a ball-screw mechanism to amplify an apparent mass amplifier using a fixed number of dampers.
Abstract: SUMMARY In this study, we propose a new seismic control device, tuned viscous mass damper (TVMD), for building systems. We give a detailed description of an apparent mass amplifier using a ball-screw mechanism, which is one of the most important components for realizing the new device. We also derive a closed-form solution of an optimum seismic control design for a single-degree-of-freedom structure subjected to harmonic excitation. The performance of the new device is compared with those of the conventional viscous damper and viscous mass damper systems. The vibration control system using the TVMD is shown to be the most effective for linear structural systems with dampers having the same additional damping coefficient. The effectiveness of the TVMD for seismic excitation is verified by analyses and shake table tests with a small-scale TVMD. Copyright © 2011 John Wiley & Sons, Ltd.

427 citations

Journal ArticleDOI
TL;DR: In this paper, the characteristics of magnetorheological dampers are summarized according to the measured responses under different conditions and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers were reviewed.
Abstract: Due to the inherent nonlinear nature of magnetorheological (MR) dampers, one of the challenging aspects for developing and utilizing these devices to achieve high performance is the development of models that can accurately describe their unique characteristics. In this review, the characteristics of MR dampers are summarized according to the measured responses under different conditions. On these bases, the considerations and methods of the parametric dynamic modelling for MR dampers are given and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers are reviewed. In the past two decades, the models for MR dampers have been focused on how to improve the modelling accuracy. Although the force–displacement behaviour is well represented by most of the proposed dynamic models for MR dampers, no simple parametric models with high accuracy for MR dampers can be found. In addition, the parametric dynamic models for MR dampers with on-line updating ability and the inverse parametric models for MR dampers are scarcely explored. Moreover, whether one dynamic model for MR dampers can portray the force–displacement and force–velocity behaviour is not only determined by the dynamic model itself but also determined by the identification method.

408 citations

Journal ArticleDOI
TL;DR: Different SA modalities are discussed: energy driven, entropy-driven, templated, and field-directed; non-equilibrium SA is discussed as a route to reconfigurable (“adaptive”) materials, and its connection to biological systems is emphasized.
Abstract: Self-assembly (SA) is the process in which a system's components—be it molecules, polymers, colloids, or macroscopic particles—organize into ordered and/or functional structures without human intervention. The main challenge in SA research is the ability to “program” the properties of the individual pieces such that they organize into a desired structure. Although a general strategy for doing so is still elusive, heuristic rules can be formulated that guide design of SA under various conditions and thermodynamic constraints. This Review examines SA in both the equilibrium and non-equilibrium/dynamic systems and discusses different SA modalities: energy driven, entropy-driven, templated, and field-directed. Non-equilibrium SA is discussed as a route to reconfigurable (“adaptive”) materials, and its connection to biological systems is emphasized.

381 citations

Journal ArticleDOI
TL;DR: In this article, two independent, single degree of freedom (DOF) tuned mass-damper (TMD) devices are incorporated into a modified version of the aero-elastic code FAST (Fatigue, Aerodynamics, Structures and Turbulence).
Abstract: The application of control techniques to offshore wind turbines has the potential to significantly improve the structural response of these systems. A new simulation tool is developed that can be utilized to model passive, semi-active and active structural control systems in wind turbines. Two independent, single degree of freedom (DOF) tuned mass- damper (TMD) devices are incorporated into a modified version of the aero-elastic code FAST (Fatigue, Aerodynamics, Structures and Turbulence). The TMDs are located in the nacelle of the turbine model, with one TMD translating in the fore-aft direction, and the other in the side-side direction. The equations of motion of the TMDs are incorporated into the source code of FAST, yielding a more realistic system for modeling structural control in wind turbines than has previously been modeled. The stiffness, damping and commanded force of each TMD are controllable through the FAST-Simulink interface, and so idealizations of semi-active and active control approaches can be implemented. A parametric study is performed to determine the optimal parameters of a passive single DOF, fore-aft, TMD system in both a barge-type and monopile support structure. The wind turbine models equipped with TMDs are then simulated and the performance of these new systems is evaluated. The results indicate that passive control approaches can be used to improve the structural response of offshore wind turbines. The results also demonstrate the potential for active control approaches. Copyright © 2010 John Wiley & Sons, Ltd.

273 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a model for controllable fluid dampers is proposed that can effectively portray the behavior of a typical magnetorheological (MR) damper and compared with experimental results for a prototype damper.
Abstract: Semiactive control devices have received significant attention in recent years because they offer the adaptability of active control devices without requiring the associated large power sources. Magnetorheological (MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. They potentially offer highly reliable operation and can be viewed as fail-safe in that they become passive dampers should the control hardware malfunction. To develop control algorithms that take full advantage of the unique features of the MR damper, models must be developed that can adequately characterize the damper's intrinsic nonlinear behavior. Following a review of several idealized mechanical models for controllable fluid dampers, a new model is proposed that can effectively portray the behavior of a typical MR damper. Comparison with experimental results for a prototype damper indicates that the model is accurate over a wide range of operating conditions and is adequate for control design an...

1,897 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations

Journal ArticleDOI
TL;DR: In this paper, a clipped-optimal control strategy based on acceleration feedback for controlling magnetorheological dampers is proposed to reduce structural responses due to seismic loads, and a numerical example, employing a newly developed model that accurately portrays the salient characteristics of the MR dampers, is presented to illustrate the effectiveness of the approach.
Abstract: Control of civil engineering structures for earthquake hazard mitigation represents a relatively new area of research that is growing rapidly. Control systems for these structures have unique requirements and constraints. For example, during a severe seismic event, the external power to a structure may be severed, rendering control schemes relying on large external power supplies ineffective. Magnetorheological (MR) dampers are a new class of devices that mesh well with the requirements and constraints of seismic applications, including having very low power requirements. This paper proposes a clipped-optimal control strategy based on acceleration feedback for controlling MR dampers to reduce structural responses due to seismic loads. A numerical example, employing a newly developed model that accurately portrays the salient characteristics of the MR dampers, is presented to illustrate the effectiveness of the approach.

1,296 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art structural control systems for wind and seismic response of buildings and bridges are discussed, as well as their advantages and limitations in the context of seismic design and retrofit.

1,026 citations

Journal ArticleDOI
TL;DR: In this article, practical considerations control mechanisms optimization of actively controlled structures are considered, and an algorithm for actively controlled structure control algorithms is proposed, with a focus on the control mechanism optimization.
Abstract: Actively controlled structures control algorithms - practical considerations control mechanisms optimization of actively controlled structures. Appendices.

745 citations