scispace - formally typeset
Search or ask a question
Journal ArticleDOI

State of the art survey on MRI brain tumor segmentation.

01 Oct 2013-Magnetic Resonance Imaging (Elsevier)-Vol. 31, Iss: 8, pp 1426-1438
TL;DR: Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation, and semiautomatic and fully automatic techniques are emphasized.
About: This article is published in Magnetic Resonance Imaging.The article was published on 2013-10-01. It has received 562 citations till now. The article focuses on the topics: Medical imaging & Segmentation.
Citations
More filters
Journal ArticleDOI
TL;DR: Deep Neural Network classifier which is one of the DL architectures for classifying a dataset of 66 brain MRIs into 4 classes e.g. normal, glioblastoma, sarcoma and metastatic bronchogenic carcinoma tumors was used.

611 citations


Cites background from "State of the art survey on MRI brai..."

  • ...Image segmentation is the non-trivial task of separating the different normal brain tissues such as gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) and the skull from the tumor tissues in brain MR images [17] as the resulted segmented tumor part only would be used in the next steps....

    [...]

Journal ArticleDOI
TL;DR: A review of MRI-based brain tumor segmentation methods using state-of-the-art algorithms with a focus on recent trend of deep learning methods.

489 citations

Journal ArticleDOI
08 Oct 2015-PLOS ONE
TL;DR: The augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types.
Abstract: Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

412 citations

Journal ArticleDOI
TL;DR: Berkeley wavelet transformation (BWT) based brain tumor segmentation is investigated to improve the accuracy and quality rate of the support vector machine (SVM) based classifier, relevant features are extracted from each segmented tissue.
Abstract: The segmentation, detection, and extraction of infected tumor area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated Berkeley wavelet transformation (BWT) based brain tumor segmentation. Furthermore, to improve the accuracy and quality rate of the support vector machine (SVM) based classifier, relevant features are extracted from each segmented tissue. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 96.51% accuracy, 94.2% specificity, and 97.72% sensitivity, demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 0.82 dice similarity index coefficient, which indicates better overlap between the automated (machines) extracted tumor region with manually extracted tumor region by radiologists. The simulation results prove the significance in terms of quality parameters and accuracy in comparison to state-of-the-art techniques.

402 citations

Book ChapterDOI
01 Jan 2019
TL;DR: This study attempted to train a Convolutional Neural Network to recognize the three most common types of brain tumors, i.e. the Glioma, Meningiomas, and Pituitary, using the simplest possible architecture.
Abstract: Misdiagnosis of brain tumor types will prevent effective response to medical intervention and decrease the chance of survival among patients. One conventional method to differentiate brain tumors is by inspecting the MRI images of the patient’s brain. For large amount of data and different specific types of brain tumors, this method is time consuming and prone to human errors. In this study, we attempted to train a Convolutional Neural Network (CNN) to recognize the three most common types of brain tumors, i.e. the Glioma, Meningioma, and Pituitary. We implemented the simplest possible architecture of CNN; i.e. one each of convolution, max-pooling, and flattening layers, followed by a full connection from one hidden layer. The CNN was trained on a brain tumor dataset consisting of 3064 T-1 weighted CE-MRI images publicly available via figshare Cheng (Brain Tumor Dataset, 2017 [1]). Using our simple architecture and without any prior region-based segmentation, we could achieve a training accuracy of 98.51% and validation accuracy of 84.19% at best. These figures are comparable to the performance of more complicated region-based segmentation algorithms, which accuracies ranged between 71.39 and 94.68% on identical dataset Cheng (Brain Tumor Dataset, 2017 [1], Cheng et al. (PLoS One 11, 2017 [2]).

316 citations

References
More filters
Journal ArticleDOI
TL;DR: The PSC algorithm as mentioned in this paper approximates the Hamilton-Jacobi equations with parabolic right-hand-sides by using techniques from the hyperbolic conservation laws, which can be used also for more general surface motion problems.

13,020 citations

Journal ArticleDOI
TL;DR: A new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets is proposed, which can detect objects whose boundaries are not necessarily defined by the gradient.
Abstract: We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.

10,404 citations


"State of the art survey on MRI brai..." refers background in this paper

  • ...The external energy of snake function is only positive in homogeneous regions, and zero at the edges [92]....

    [...]

Journal ArticleDOI
TL;DR: This correspondence presents a new algorithm for segmentation of intensity images which is robust, rapid, and free of tuning parameters, and suggests two ways in which it can be employed, namely, by using manual seed selection or by automated procedures.
Abstract: We present here a new algorithm for segmentation of intensity images which is robust, rapid, and free of tuning parameters. The method, however, requires the input of a number of seeds, either individual pixels or regions, which will control the formation of regions into which the image will be segmented. In this correspondence, we present the algorithm, discuss briefly its properties, and suggest two ways in which it can be employed, namely, by using manual seed selection or by automated procedures. >

3,331 citations


"State of the art survey on MRI brai..." refers background in this paper

  • ...The simplest region-based segmentation technique is the region growing, which is used to extract a connected region of similar pixels from an image [48]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a shape model based on the Hamilton-Jacobi approach to shape modeling, which retains some of the attractive features of existing methods and overcomes some of their limitations.
Abstract: Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and overcomes some of their limitations. The authors' techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori assumption about the object's topology is made. A single instance of the authors' model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. This method is based on the ideas developed by Osher and Sethian (1988) to model propagating solid/liquid interfaces with curvature-dependent speeds. The interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a "Hamilton-Jacobi" type equation written for a function in which the interface is a particular level set. A speed term synthesized from the image is used to stop the interface in the vicinity of object boundaries. The resulting equation of motion is solved by employing entropy-satisfying upwind finite difference schemes. The authors present a variety of ways of computing the evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme is demonstrated with numerical experiments on some synthesized images and some low contrast medical images. >

3,039 citations

Journal ArticleDOI
TL;DR: A critical appraisal of the current status of semi-automated and automated methods for the segmentation of anatomical medical images is presented, with an emphasis on the advantages and disadvantages of these methods for medical imaging applications.
Abstract: ▪ Abstract Image segmentation plays a crucial role in many medical-imaging applications, by automating or facilitating the delineation of anatomical structures and other regions of interest. We present a critical appraisal of the current status of semiautomated and automated methods for the segmentation of anatomical medical images. Terminology and important issues in image segmentation are first presented. Current segmentation approaches are then reviewed with an emphasis on the advantages and disadvantages of these methods for medical imaging applications. We conclude with a discussion on the future of image segmentation methods in biomedical research.

2,230 citations


"State of the art survey on MRI brai..." refers background in this paper

  • ...In general, segmentation techniques have been divided for diverse authors [1,4,40,41] into four major classes:...

    [...]

Related Papers (5)