scispace - formally typeset
Open AccessJournal ArticleDOI

Static Solutions of Einstein's Field Equations for Spheres of Fluid

Richard C. Tolman
- 15 Feb 1939 - 
- Vol. 55, Iss: 4, pp 364-373
Reads0
Chats0
TLDR
In this article, a method is developed for treating Einstein's field equations, applied to static spheres of fluid, in such a manner as to provide explicit solutions in terms of known analytic functions.
Abstract
A method is developed for treating Einstein's field equations, applied to static spheres of fluid, in such a manner as to provide explicit solutions in terms of known analytic functions. A number of new solutions are thus obtained, and the properties of three of the new solutions are examined in detail. It is hoped that the investigation may be of some help in connection with studies of stellar structure. (See the accompanying article by Professor Oppenheimer and Mr. Volkoff.)

read more

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI

A theory of highly condensed matter

TL;DR: In this article, a model relativistic, many-body, quantum field theory composed of a baryon field, a neutral scalar meson field coupled to the scalar density ψ ψ, and a neutral vector meson fields coupled with the conserved Baryon current i Ψ γλψ is developed.
Journal ArticleDOI

Neutron Star Structure and the Equation of State

TL;DR: In this article, Buchdahl and Tolman showed that the moment of inertia and the binding energy of a neutron star are nearly universal functions of the star's compactness, which can be understood by considering two analytic, yet realistic, solutions of Einstein's equations.
Journal ArticleDOI

Masses, Radii, and the Equation of State of Neutron Stars

TL;DR: In this paper, the authors summarize the current knowledge of neutron-star masses and radii and show that the distribution of neutron star masses is much wider than previously thought, with three known pulsars now firmly in the 1.9-2.0-M⊙ mass range.
Journal ArticleDOI

Masses, Radii, and Equation of State of Neutron Stars

TL;DR: In this paper, the authors summarize the current knowledge of neutron star masses and radii and show that the neutron star mass distribution is much wider than previously thought, with 3 known pulsars now firmly in the 1.9-2.0 Msun mass range.
Related Papers (5)

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more