scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Static synchronous compensators (STATCOM): a review

TL;DR: The Fast Acting Static Synchronous Compensator (STATCOM) as discussed by the authors is a representative of FACTS family and is extensively used as the state-of-theart dynamic shunt compensator for reactive power control in transmission and distribution system.
Abstract: Fast acting static synchronous compensator (STATCOM), a representative of FACTS family, is a promising technology being extensively used as the state-of-the-art dynamic shunt compensator for reactive power control in transmission and distribution system. Over the last couple of decades, researchers and engineers have made path-breaking research on this technology and by virtue of which, many STATCOM controllers based on the self-commutating solid-state voltage-source converter (VSC) have been developed and commercially put in operation to control system dynamics under stressed conditions. Because of its many attributes, STATCOM has emerged as a qualitatively superior controller relative to the line commutating static VAR compensator (SVC). This controller is called with different terminologies as STATic COMpensator advanced static VAR compensator, advanced static VAR generator or static VAR generator, STATic CONdenser, synchronous solid-state VAR compensator, VSC-based SVC or self-commutated SVC or static synchronous compensator (SSC or S2C). The development of STATCOM controller employing various solid-state converter topologies, magnetics configurations, control algorithms, switching techniques and so on, has been well reported in literature with its versatile applications in power system. A review on the state-of-the-art STATCOM technology and further research potential are presented classifying more than 300 research publications.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a self-synchronized synchronverter is proposed to improve the performance of grid-connected inverters by removing the dedicated synchronization unit, which can automatically synchronize itself with the grid before connection and track the grid frequency after connection.
Abstract: A synchronverter is an inverter that mimics synchronous generators, which offers a mechanism for power systems to control grid-connected renewable energy and facilitates smart grid integration. Similar to other grid-connected inverters, it needs a dedicated synchronization unit, e.g., a phase-locked loop (PLL), to provide the phase, frequency, and amplitude of the grid voltage as references. In this paper, a radical step is taken to improve the synchronverter as a self-synchronized synchronverter by removing the dedicated synchronization unit. It can automatically synchronize itself with the grid before connection and track the grid frequency after connection. This considerably improves the performance, reduces the complexity, and computational burden of the controller. All the functions of the original synchronverter, such as frequency and voltage regulation, real power, and reactive power control, are maintained. Both simulation and experimental results are presented to validate the control strategy. Experimental results have shown that the proposed control strategy can improve the performance of frequency tracking by more than 65%, the performance of real power control by 83%, and the performance of reactive power control by about 70%.

793 citations

Journal ArticleDOI
TL;DR: In this article, a lowvoltage ride-through scheme for the permanent magnet synchronous generator (PMSG) wind power system at the grid voltage sag is proposed, where the dc-link voltage is controlled by the generator side converter instead of the grid-side converter (GSC).
Abstract: This paper proposes a low-voltage ride-through scheme for the permanent magnet synchronous generator (PMSG) wind power system at the grid voltage sag. The dc-link voltage is controlled by the generator-side converter instead of the grid-side converter (GSC). Considering the nonlinear relationship between the generator speed ωm and the dc-link voltage Vdc , a dc-link voltage controller is designed using a feedback linearization theory. The GSC controls the grid active power for a maximum power point tracking. The validity of this control algorithm has been verified by simulation and experimental results for a reduced-scale PMSG wind turbine simulator.

255 citations


Cites methods from "Static synchronous compensators (ST..."

  • ...In other way, the STATCOM has been applied to keep the wind turbine system connected to the grid during grid faults [15]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a concise review of the grid-integrated WECSs employing permanent magnet synchronous generators (PMSGs), which have been reported in various research literatures primarily in reputed research journals and transactions during last few years.
Abstract: The growing trends in wind energy technology are motivating the researchers to work in this area with the aim towards the optimization of the energy extraction from the wind and the injection of the quality power into the grid. Over the last few years, wind generators based on permanent magnet synchronous machines (PMSMs) are becoming the most popular solution for the modern wind energy conversion systems (WECSs). This paper presents a concise review of the grid-integrated WECSs employing permanent magnet synchronous generators (PMSGs). It reviews the trends in converter topologies, control methodologies, and methods for maximum energy extraction in PMSG based WECSs, which have been reported in various research literatures primarily in reputed research journals and transactions during last few years. It also presents an overview to the grid interconnection issues related to output power smoothing and reactive power control in addition to fault-ride-through (FRT) and grid support capabilities of PMSG based WECSs. This review article will serve the researchers working in the area of grid-integrated PMSG based WECSs in the exploration of trends, developments and challenges in the past research works and in finding out the relevant references for their research work.

159 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the impact of ac-bus voltage control on damping and restoring components in VSCs connected to the weak grid and provided a detailed analysis.
Abstract: With the wide application of voltage source converters (VSCs) in power system, dc-bus voltage control instabilities increasingly occurred in practical conditions, especially in weak ac grid, which poses challenges on stability and security of power converters applications. This paper aims to give physical insights into the stability of dc-bus voltage control affected by ac-bus voltage control in VSC connected to weak grid. The concepts of damping and restoring components are developed for dc-bus voltage to describe the stability of dc-bus voltage control. The impact of ac-bus voltage control on dc-bus voltage control stability can be revealed by investigating the impact of ac-bus voltage control on damping and restoring components essentially. Furthermore, the detailed analysis for the impact of ac-bus voltage control on damping and restoring components is presented considering varied ac system strengths, operating points, and ac-bus voltage control parameters. The simulation results from 1.5-MW full-capacity wind power generation system are demonstrated which conform well to the analysis. Finally, the experimental results validate the analysis.

134 citations


Cites background from "Static synchronous compensators (ST..."

  • ...NOWADAYS, grid-connected voltage source converters (VSCs) have been widely applied in modern power systems, such as wind/solar energy generations, high-voltage direct current (HVdc) transmissions, flexible ac transmission system devices, and motor drive systems [1]–[5]....

    [...]

Journal ArticleDOI
TL;DR: The topic of voltage support is open for further research, and the control scheme proposed in this paper can be viewed as an interesting configuration to devise other control strategies in future works.
Abstract: Static synchronous compensators have been broadly employed for the provision of electrical ac network services, which include voltage regulation, network balance, and stability improvement. Several studies of such compensators have also been conducted to improve the ac network operation during unbalanced voltage sags. This paper presents a complete control scheme intended for synchronous compensators operating under these abnormal network conditions. In particular, this control scheme introduces two contributions: a novel reactive current reference generator and a new voltage support control loop. The current reference generator has as a main feature the capacity to supply the required reactive current even when the voltage drops in amplitude during the voltage sag. Thus, a safe system operation is easily guaranteed by fixing the limit required current to the maximum rated current. The voltage control loop is able to implement several control strategies by setting two voltage set points. In this paper, three voltage support control strategies are proposed, and their advantages and limitations are discussed in detail. The two theoretical contributions of this paper have been validated by experimental results. Certainly, the topic of voltage support is open for further research, and the control scheme proposed in this paper can be viewed as an interesting configuration to devise other control strategies in future works.

129 citations


Cites background from "Static synchronous compensators (ST..."

  • ...In the steady state, the active power absorption is very small, and it is only used to compensate for power losses....

    [...]

References
More filters
Book
01 Jan 1994
TL;DR: In this article, the authors present a model for the power system stability problem in modern power systems based on Synchronous Machine Theory and Modelling, and a model representation of the synchronous machine representation in stability studies.
Abstract: Part I: Characteristics of Modern Power Systems. Introduction to the Power System Stability Problem. Part II: Synchronous Machine Theory and Modelling. Synchronous Machine Parameters. Synchronous Machine Representation in Stability Studies. AC Transmission. Power System Loads. Excitation in Stability Studies. Prime Mover and Energy Supply Systems. High-Voltage Direct-Current Transmission. Control of Active Power and Reactive Power. Part III: Small Signal Stability. Transient Stability. Voltage Stability. Subsynchronous Machine Representation in Stability Studies. AC Transmission. Power System Loads. Excitation in Stability Studies. Prime Mover and Energy Supply Systems, High-Voltage Direct-Current Transmission. Control of Active Power and Reactive Power. Part III: Small Signal Stability. Transient Stability. Voltage Stability. Subsynchronous Oscillations. Mid-Term and Long-Term Stability. Methods of Improving System Stability.

13,467 citations

Book
26 Jul 1989
TL;DR: In this paper, the authors present a simulation of power switch-mode converters for zero-voltage and/or zero-current switchings in power electronic converters and systems.
Abstract: Partial table of contents: Overview of Power Semiconductor Switches Computer Simulation of Power Electronic Converters and Systems GENERIC POWER ELECTRONIC CIRCUITS dc--dc Switch-Mode Converters Resonant Converters: Zero-Voltage and/or Zero-Current Switchings POWER SUPPLY APPLICATIONS Power Conditioners and Uninterruptible Power Supplies MOTOR DRIVE APPLICATIONS dc Motor Drives Induction Motor Drives Synchronous Motor Drives OTHER APPLICATIONS Residential and Industrial Applications Optimizing the Utility Interface with Power Electronic Systems SEMICONDUCTOR DEVICES Basic Semiconductor Physics Power Diodes Power MOSFETs Thyristors Emerging Devices and Circuits PRACTICAL CONVERTER DESIGN CONSIDERATIONS Snubber Circuits Gate and Base Drive Circuits Design of Magnetic Components Index

5,911 citations

Journal ArticleDOI
TL;DR: In this paper, a new instantaneous reactive power compensator comprising switching devices is proposed, which requires practically no energy storage components, and is based on the instantaneous value concept for arbitrary voltage and current waveforms.
Abstract: The conventional reactive power in single-phase or three- phase circuits has been defined on the basis of the average value concept for sinusoidal voltage and current waveforms in steady states. The instantaneous reactive power in three-phase circuits is defined on the basis of the instantaneous value concept for arbitrary voltage and current waveforms, including transient states. A new instantaneous reactive power compensator comprising switching devices is proposed which requires practically no energy storage components.

3,331 citations

Proceedings ArticleDOI
08 Oct 1995
TL;DR: This paper presents three multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate DC sources.
Abstract: Multilevel voltage source converters are emerging as a new breed of power converter options for high-power applications. The multilevel voltage source converters typically synthesize the staircase voltage wave from several levels of DC capacitor voltages. One of the major limitations of the multilevel converters is the voltage unbalance between different levels. The techniques to balance the voltage between different levels normally involve voltage clamping or capacitor charge control. There are several ways of implementing voltage balance in multilevel converters. Without considering the traditional magnetic coupled converters, this paper presents three recently developed multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate DC sources. The operating principle, features, constraints, and potential applications of these converters are discussed.

3,232 citations

Journal ArticleDOI
TL;DR: Current control techniques for three-phase voltage-source pulsewidth modulated converters, including bang-bang (hysteresis, delta modulation) controllers and predictive controllers with on-line optimization are reviewed.
Abstract: The aim of this paper is to present a review of current control techniques for three-phase voltage-source pulsewidth modulated converters. Various techniques, different in concept, have been described in two main groups: linear and nonlinear. The first includes proportional integral (stationary and synchronous) and state feedback controllers, and predictive techniques with constant switching frequency. The second comprises bang-bang (hysteresis, delta modulation) controllers and predictive controllers with on-line optimization. New trends in current control-neural networks and fuzzy-logic-based controllers-are discussed, as well. Selected oscillograms accompany the presentation in order to illustrate properties of the described controller groups.

2,086 citations