scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Stationarity Is Dead: Whither Water Management?

TL;DR: Climate change undermines a basic assumption that historically has facilitated management of water supplies, demands, and risks and threatens to derail efforts to conserve and manage water resources.
Abstract: Climate change undermines a basic assumption that historically has facilitated management of water supplies, demands, and risks.

Content maybe subject to copyright    Report

Citations
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose to use the output of a single climate model as an input for infrastructure design, instead of optimizing based on the climate conditions projected by models, therefore, future infrastructure should be made more robust to possible changes in climate conditions.
Abstract: Many decisions concerning long-lived investments already need to take into account climate change. But doing so is not easy for at least two reasons. First, due to the rate of climate change, new infrastructure will have to be able to cope with a large range of changing climate conditions, which will make design more difficult and construction more expensive. Second, uncertainty in future climate makes it impossible to directly use the output of a single climate model as an input for infrastructure design, and there are good reasons to think that the needed climate information will not be available soon. Instead of optimizing based on the climate conditions projected by models, therefore, future infrastructure should be made more robust to possible changes in climate conditions. This aim implies that users of climate information must also change their practices and decision-making frameworks, for instance by adapting the uncertainty-management methods they currently apply to exchange rates or RD (ii) favouring reversible and flexible options; (iii) buying “safety margins” in new investments; (iv) promoting soft adaptation strategies, including long-term prospective; and (v) reducing decision time horizons. Moreover, it is essential to consider both negative and positive side-effects and externalities of adaptation measures. Adaptation–mitigation interactions also call for integrated design and assessment of adaptation and mitigation policies, which are often developed by distinct communities.

1,107 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue that groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged, and propose a solution to this problem.
Abstract: Groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged.

1,053 citations

Journal ArticleDOI
TL;DR: In this article, the authors used climate, water, economic, and remote sensing data combined with biophysical modeling to understand the drivers of the "Millennium Drought" and its impacts.
Abstract: [1] The “Millennium Drought” (2001–2009) can be described as the worst drought on record for southeast Australia. Adaptation to future severe droughts requires insight into the drivers of the drought and its impacts. These were analyzed using climate, water, economic, and remote sensing data combined with biophysical modeling. Prevailing El Nino conditions explained about two thirds of rainfall deficit in east Australia. Results for south Australia were inconclusive; a contribution from global climate change remains plausible but unproven. Natural processes changed the timing and magnitude of soil moisture, streamflow, and groundwater deficits by up to several years, and caused the amplification of rainfall declines in streamflow to be greater than in normal dry years. By design, river management avoided impacts on some categories of water users, but did so by exacerbating the impacts on annual irrigation agriculture and, in particular, river ecosystems. Relative rainfall reductions were amplified 1.5–1.7 times in dryland wheat yields, but the impact was offset by steady increases in cropping area and crop water use efficiency (perhaps partly due to CO2 fertilization). Impacts beyond the agricultural sector occurred (e.g., forestry, tourism, utilities) but were often diffuse and not well quantified. Key causative pathways from physical drought to the degradation of ecological, economic, and social health remain poorly understood and quantified. Combined with the multiple dimensions of multiyear droughts and the specter of climate change, this means future droughts may well break records in ever new ways and not necessarily be managed better than past ones.

989 citations


Cites background from "Stationarity Is Dead: Whither Water..."

  • ...For example, if some part of drought impacts can be attributed to global warming, more frequent and more severe events may be expected in future [Milly et al., 2008]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers.
Abstract: Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a ‘compound event’. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.

960 citations

References
More filters
Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring, which leads to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest.
Abstract: All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate--for example, on the frequency of heatwaves--this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring. Even without any changes in precipitation intensity, both of these effects lead to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest. Where storage capacities are not sufficient, much of the winter runoff will immediately be lost to the oceans. With more than one-sixth of the Earth's population relying on glaciers and seasonal snow packs for their water supply, the consequences of these hydrological changes for future water availability--predicted with high confidence and already diagnosed in some regions--are likely to be severe.

3,831 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined some aspects of the hydrological cycle that are robust across the models, including the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and decrease in the horizontal sensible heat transport in the extratropics.
Abstract: Using the climate change experiments generated for the Fourth Assessment of the Intergovernmental Panel on Climate Change, this study examines some aspects of the changes in the hydrological cycle that are robust across the models. These responses include the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and the decrease in the horizontal sensible heat transport in the extratropics. A surprising finding is that a robust decrease in extratropical sensible heat transport is found only in the equilibrium climate response, as estimated in slab ocean responses to the doubling of CO2, and not in transient climate change scenarios. All of these robust responses are consequences of the increase in lower-tropospheric water vapor.

3,811 citations

Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: This work shows that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow, and projects changes in sustainable water availability by the year 2050.
Abstract: Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10-40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10-30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

2,059 citations

Journal ArticleDOI
25 May 2007-Science
TL;DR: This paper showed that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid climate should already be under way.
Abstract: How anthropogenic climate change will affect hydroclimate in the arid regions of southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid climate should already be under way. If these models are correct, the levels of aridity of the recent multiyear drought or the Dust Bowl and the 1950s droughts will become the new climatology of the American Southwest within a time frame of years to decades.

1,912 citations

Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.
Abstract: Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of streamflow trends on flow regime further complicates the issue. Here we investigate the changes in risk of great floods--that is, floods with discharges exceeding 100-year levels from basins larger than 200,000 km(2)--using both streamflow measurements and numerical simulations of the anthropogenic climate change associated with greenhouse gases and direct radiative effects of sulphate aerosols. We find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.

1,503 citations