scispace - formally typeset
Search or ask a question
Book

Statistical Analysis with Missing Data

TL;DR: This work states that maximum Likelihood for General Patterns of Missing Data: Introduction and Theory with Ignorable Nonresponse and large-Sample Inference Based on Maximum Likelihood Estimates is likely to be high.
Abstract: Preface.PART I: OVERVIEW AND BASIC APPROACHES.Introduction.Missing Data in Experiments.Complete-Case and Available-Case Analysis, Including Weighting Methods.Single Imputation Methods.Estimation of Imputation Uncertainty.PART II: LIKELIHOOD-BASED APPROACHES TO THE ANALYSIS OF MISSING DATA.Theory of Inference Based on the Likelihood Function.Methods Based on Factoring the Likelihood, Ignoring the Missing-Data Mechanism.Maximum Likelihood for General Patterns of Missing Data: Introduction and Theory with Ignorable Nonresponse.Large-Sample Inference Based on Maximum Likelihood Estimates.Bayes and Multiple Imputation.PART III: LIKELIHOOD-BASED APPROACHES TO THE ANALYSIS OF MISSING DATA: APPLICATIONS TO SOME COMMON MODELS.Multivariate Normal Examples, Ignoring the Missing-Data Mechanism.Models for Robust Estimation.Models for Partially Classified Contingency Tables, Ignoring the Missing-Data Mechanism.Mixed Normal and Nonnormal Data with Missing Values, Ignoring the Missing-Data Mechanism.Nonignorable Missing-Data Models.References.Author Index.Subject Index.
Citations
More filters
Journal ArticleDOI
TL;DR: 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayesian multiple imputation (MI) are presented and may eventually extend the ML and MI methods that currently represent the state of the art.
Abstract: Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random (MAR) concept. They summarize the evidence against older procedures and, with few exceptions, discourage their use. They present, in both technical and practical language, 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayesian multiple imputation (MI). Newer developments are discussed, including some for dealing with missing data that are not MAR. Although not yet in the mainstream, these procedures may eventually extend the ML and MI methods that currently represent the state of the art.

10,568 citations

Journal ArticleDOI
TL;DR: Mice adds new functionality for imputing multilevel data, automatic predictor selection, data handling, post-processing imputed values, specialized pooling routines, model selection tools, and diagnostic graphs.
Abstract: The R package mice imputes incomplete multivariate data by chained equations. The software mice 1.0 appeared in the year 2000 as an S-PLUS library, and in 2001 as an R package. mice 1.0 introduced predictor selection, passive imputation and automatic pooling. This article documents mice, which extends the functionality of mice 1.0 in several ways. In mice, the analysis of imputed data is made completely general, whereas the range of models under which pooling works is substantially extended. mice adds new functionality for imputing multilevel data, automatic predictor selection, data handling, post-processing imputed values, specialized pooling routines, model selection tools, and diagnostic graphs. Imputation of categorical data is improved in order to bypass problems caused by perfect prediction. Special attention is paid to transformations, sum scores, indices and interactions using passive imputation, and to the proper setup of the predictor matrix. mice can be downloaded from the Comprehensive R Archive Network. This article provides a hands-on, stepwise approach to solve applied incomplete data problems.

10,234 citations

Journal ArticleDOI
TL;DR: A new statistical method is presented, applicable to genotype data at linked loci from a population sample, that improves substantially on current algorithms and performs well in absolute terms, suggesting that reconstructing haplotypes experimentally or by genotyping additional family members may be an inefficient use of resources.
Abstract: Current routine genotyping methods typically do not provide haplotype information, which is essential for many analyses of fine-scale molecular-genetics data. Haplotypes can be obtained, at considerable cost, experimentally or (partially) through genotyping of additional family members. Alternatively, a statistical method can be used to infer phase and to reconstruct haplotypes. We present a new statistical method, applicable to genotype data at linked loci from a population sample, that improves substantially on current algorithms; often, error rates are reduced by >50%, relative to its nearest competitor. Furthermore, our algorithm performs well in absolute terms, suggesting that reconstructing haplotypes experimentally or by genotyping additional family members may be an inefficient use of resources.

7,482 citations

Journal ArticleDOI
TL;DR: The principles of the method and how to impute categorical and quantitative variables, including skewed variables, are described and shown and the practical analysis of multiply imputed data is described, including model building and model checking.
Abstract: Multiple imputation by chained equations is a flexible and practical approach to handling missing data. We describe the principles of the method and show how to impute categorical and quantitative variables, including skewed variables. We give guidance on how to specify the imputation model and how many imputations are needed. We describe the practical analysis of multiply imputed data, including model building and model checking. We stress the limitations of the method and discuss the possible pitfalls. We illustrate the ideas using a data set in mental health, giving Stata code fragments. Copyright © 2010 John Wiley & Sons, Ltd.

6,349 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a global test statistic for multivariate data with missing values, that is, whether the missing data are missing completely at random (MCAR), that is whether missingness depends on the variables in the data set.
Abstract: A common concern when faced with multivariate data with missing values is whether the missing data are missing completely at random (MCAR); that is, whether missingness depends on the variables in the data set. One way of assessing this is to compare the means of recorded values of each variable between groups defined by whether other variables in the data set are missing or not. Although informative, this procedure yields potentially many correlated statistics for testing MCAR, resulting in multiple-comparison problems. This article proposes a single global test statistic for MCAR that uses all of the available data. The asymptotic null distribution is given, and the small-sample null distribution is derived for multivariate normal data with a monotone pattern of missing data. The test reduces to a standard t test when the data are bivariate with missing data confined to a single variable. A limited simulation study of empirical sizes for the test applied to normal and nonnormal data suggests th...

6,045 citations