scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Statistical physics of social dynamics

11 May 2009-Reviews of Modern Physics (American Physical Society)-Vol. 81, Iss: 2, pp 591-646
TL;DR: In this article, a wide list of topics ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading are reviewed and connections between these problems and other, more traditional, topics of statistical physics are highlighted.
Abstract: Statistical physics has proven to be a fruitful framework to describe phenomena outside the realm of traditional physics. Recent years have witnessed an attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. A wide list of topics are reviewed ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading. The connections between these problems and other, more traditional, topics of statistical physics are highlighted. Comparison of model results with empirical data from social systems are also emphasized.
Citations
More filters
01 Jan 2012

3,692 citations

01 Jan 2003

3,093 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: Analysis of the trajectories of people carrying cell phones reveals that human mobility patterns are highly predictable, and a remarkable lack of variability in predictability is found, which is largely independent of the distance users cover on a regular basis.
Abstract: A range of applications, from predicting the spread of human and electronic viruses to city planning and resource management in mobile communications, depend on our ability to foresee the whereabouts and mobility of individuals, raising a fundamental question: To what degree is human behavior predictable? Here we explore the limits of predictability in human dynamics by studying the mobility patterns of anonymized mobile phone users. By measuring the entropy of each individual's trajectory, we find a 93% potential predictability in user mobility across the whole user base. Despite the significant differences in the travel patterns, we find a remarkable lack of variability in predictability, which is largely independent of the distance users cover on a regular basis.

3,040 citations

Journal ArticleDOI
TL;DR: This work offers a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

2,669 citations

Journal ArticleDOI
TL;DR: This paper showed that the most efficient spreaders are not always necessarily the most connected agents in a network, and that the position of an agent relative to the hierarchical topological organization of the network might be as important as its connectivity.
Abstract: Spreading of information, ideas or diseases can be conveniently modelled in the context of complex networks. An analysis now reveals that the most efficient spreaders are not always necessarily the most connected agents in a network. Instead, the position of an agent relative to the hierarchical topological organization of the network might be as important as its connectivity.

2,618 citations


Cites methods from "Statistical physics of social dynam..."

  • ...These models have been used to describe disease spreading as well as information and rumour spreading in social processes where an actor constantly needs to be reminde...

    [...]

References
More filters
Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations


"Statistical physics of social dynam..." refers background in this paper

  • ...In order to reconcile both properties, Watts and Strogatz have introduced the small-world network model (Watts and Strogatz, 1998), which allows to interpolate between regular lowdimensional lattices and random networks, by introducing a certain fraction p of random long-range connections into an…...

    [...]

  • ...In (Watts and Strogatz, 1998) two main quantities have been considered: the characteristic path length L(p), defined as the number of edges in the shortest path between two vertices, averaged over all pairs of vertices, and the clustering coefficient C(p), defined as follows....

    [...]

  • ...Another interesting effect of the topology occurs when voter dynamics is considered on small-world networks (Watts and Strogatz, 1998)....

    [...]

Book
01 Jan 1962
TL;DR: A history of diffusion research can be found in this paper, where the authors present a glossary of developments in the field of Diffusion research and discuss the consequences of these developments.
Abstract: Contents Preface CHAPTER 1. ELEMENTS OF DIFFUSION CHAPTER 2. A HISTORY OF DIFFUSION RESEARCH CHAPTER 3. CONTRIBUTIONS AND CRITICISMS OF DIFFUSION RESEARCH CHAPTER 4. THE GENERATION OF INNOVATIONS CHAPTER 5. THE INNOVATION-DECISION PROCESS CHAPTER 6. ATTRIBUTES OF INNOVATIONS AND THEIR RATE OF ADOPTION CHAPTER 7. INNOVATIVENESS AND ADOPTER CATEGORIES CHAPTER 8. DIFFUSION NETWORKS CHAPTER 9. THE CHANGE AGENT CHAPTER 10. INNOVATION IN ORGANIZATIONS CHAPTER 11. CONSEQUENCES OF INNOVATIONS Glossary Bibliography Name Index Subject Index

38,750 citations

Journal ArticleDOI
TL;DR: In this paper, it is argued that the degree of overlap of two individuals' friendship networks varies directly with the strength of their tie to one another, and the impact of this principle on diffusion of influence and information, mobility opportunity, and community organization is explored.
Abstract: Analysis of social networks is suggested as a tool for linking micro and macro levels of sociological theory. The procedure is illustrated by elaboration of the macro implications of one aspect of small-scale interaction: the strength of dyadic ties. It is argued that the degree of overlap of two individuals' friendship networks varies directly with the strength of their tie to one another. The impact of this principle on diffusion of influence and information, mobility opportunity, and community organization is explored. Stress is laid on the cohesive power of weak ties. Most network models deal, implicitly, with strong ties, thus confining their applicability to small, well-defined groups. Emphasis on weak ties lends itself to discussion of relations between groups and to analysis of segments of social structure not easily defined in terms of primary groups.

37,560 citations

Journal ArticleDOI
TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Abstract: A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two‐dimensional rigid‐sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four‐term virial coefficient expansion.

35,161 citations


"Statistical physics of social dynam..." refers methods in this paper

  • ...Monte Carlo simulations reveal that the number nc of clusters in the final configuration can be approximated by the expression 1/(2ǫ)....

    [...]

  • ...In physics this technique can be traced back to molecular dynamics (Alder and Wainwright, 1957, 1959) and Metropolis and Monte Carlo (Metropolis et al., 1953) simulations....

    [...]

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations


"Statistical physics of social dynam..." refers methods in this paper

  • ...The Barabási and Albert model (BA) (Barabási and Albert, 1999), has become one of the most famous models for complex heterogeneous networks, and is constructed as follows: starting from a small set of m fully interconnected nodes, new nodes are introduced one by one....

    [...]