scispace - formally typeset
Open AccessBook

Statistics for experimenters : design, innovation, and discovery

Reads0
Chats0
TLDR
In this paper, the authors describe the learning process of statistical methods for the generation of knowledge and their application to the problem of statistical analysis of real-world data, and present several examples.
Abstract
Preface to the Second Edition. Chapter 1. Catalizing the Generation of Knowledge. 1.1. The Learning Process. 1.2. Important Considerations. 1.3. The Experimenter's Problem and Statistical Methods. 1.4. A Typical Investigation. 1.5. How to Use Statistical Techniques. References and Further Reading. Chapter 2. Basics: Probability, Parameters and Statistics. 2.1. Experimental Error. 2.2. Distributions. 2.3. Statistics and Parameters. 2.4. Measures of Location and Spread. 2.5. The Normal Distribution. 2.6. Normal Probability Plots. 2.7. Randomness and Random Variables. 2.8. Covariance and Correlation as Measures of Linear Dependence. 2.9. Student's t Distribution. 2.10. Estimates of Parameters. 2.11. Random Sampling from a Normal Population. 2.12. The Chi-Square and F Distributions. 2.13. The Binomial Distribution. 2.14. The Poisson Distribution. Appendix 2A. Mean and Variance of Linear Combinations of Observations. References and Further Reading. Chapter 3. Comparing Two Entities: Relevant Reference Distributions, Tests and Confidence Intervals. 3.1. Relevant Reference Sets and Distributions. 3.2. Randomized Paired Comparison Design: Boys' Shoes Example. 3.3. Blocking and Randomization. 3.4. Reprise: Comparison, Replication, Randomization, and Blocking in Simple Experiments. 3.5. More on Significance Tests. 3.6. Inferences About Data that are Discrete: Binomial Distribution. 3.7. Inferences about Frequencies (Counts Per Unit): The Poisson Distribution. 3.8. Contingency Tables and Tests of Association. Appendix 3A. Comparison of the Robustness of Tests to Compare Two Entities. Appendix 3B. Calculation of reference distribution from past data. References and Further Reading. Chapter 4. Comparing a Number of Entities: Randomized Blocks and Latin Squares. 4.1. Comparing k Treatments in a Fully Randomized Design. 4.2. Randomized Block Designs. 4.3. A Preliminary Note on Split-Plot Experiments and their Relationship to Randomized Blocks. 4.4. More than one blocking component: Latin Squares. 4.5. Balanced Incomplete Block Designs. Appendix 4A. The Rationale for the Graphical ANOVA. Appendix 4B. Some Useful Latin Square, Graeco-Latin Square, and Hyper-Graeco-Latin Square Designs. References and Further Reading. Chapter 5. Factorial Designs at Two Levels: Advantages of Experimental Design. 5.1. Introduction. 5.2. Example 1: The Effects of Three Factors (Variables) on Clarity of Film. 5.3. Example 2: The Effects of Three Factors on Three Physical Properties of a Polymer Solution. 5.4. A 23 Factorial Design: Pilot Plant Investigation. 5.5. Calculation of Main Effects. 5.6. Interaction Effects. 5.7. Genuine Replicate Runs. 5.8. Interpretation of Results. 5.9. The Table of Contrasts. 5.10. Misuse of the ANOVA for 2k Factorial Experiments. 5.11. Eyeing the Data. 5.12. Dealing with More Than One Response: A Pet Food Experiment. 5.13. A 24 Factorial Design: Process Development Study. 5.14. Analysis Using Normal and Lenth Plots. 5.15. Other Models for Factorial Data. 5.16. Blocking the 2k Factorial Designs. 5.17. Learning by Doing. 5.18. Summary. Appendix 5A. Blocking Larger Factorial Designs. Appendix 5B. Partial Confounding. References and Further Reading. Chapter 6. Fraction Factorial Designs: Economy in Experimentation. 6.1. Effects of Five Factors on Six Properties of Films in Eight Runs. 6.2. Stability of New Product, Four Factors in Eight Runs, a 24 1 Design. 6.3. A Half-Fraction Example: The Modification of a Bearing. 6.4. The Anatomy of the Half Fraction. 6.5. The 27 4III Design: A Bicycle Example. 6.6. Eight-Run Designs. 6.7. Using Table 6.6: An Illustration. 6.8. Sign Switching, Foldover, and Sequential Assembly. 6.9. An Investigation Using Multiple-Column Foldover. 6.10. Increasing Design Resolution from III to IV by Foldover. 6.11. Sixteen-Run Designs. 6.12. The 25 1 Nodal Half Replicate of the 25 Factorial: Reactor Example. 6.13. The 28 4 IV Nodal Sixteenth Fraction of a 28 Factorial. 6.14. The 215 11 III Nodal Design: The Sixty-Fourth Fraction of the 215 Factorial. 6.15. Constructing Other Two-Level Fractions. 6.16. Elimination of Block Effects. References and Further Reading. Chapter 7. Other Fractionals, Analysis and Choosing Follow-up Runs. 7.1. Plackett and Burman Designs. 7.2. Choosing Follow-Up Runs. 7.3. Justifications for the Use of Fractionals. Appendix 7A. Technical Details. Appendix 7B. An Approximate Partial Analysis for PB Designs. Appendix 7C. Hall's Orthogonal Designs. References and Further Reading. Chapter 8. Factorial Designs and Data Transformation. 8.1. A Two-Way (Factorial) Design. 8.2. Simplification and Increased Sensitivity from Transformation. Appendix 8A. Rationale for Data Transformation. Appendix 8B. Bartlett's chi2nu for Testing Inhomogeneity of Variance. References and Further Reading. Chapter 9. Multiple Sources of Variation: Split Plot Designs, Variance Components and Error Transmission. 9.1. Split-Plot Designs, Variance Components, and Error Transmission. 9.2. Split-Plot Designs. 9.3. Estimating Variance Components. 9.4. Transmission of Error. References and Further Reading. Chapter 10. Least Squares and Why You Need to Design Experiments. 10.1. Estimation With Least Squares. 10.2. The Versatility of Least Squares. 10.3. The Origins of Experimental Design. 10.4. Nonlinear Models. Appendix 10A. Vector Representation of Statistical Concepts. Appendix 10B. Matrix Version of Least Squares. Appendix 10C. Analysis of Factorials, Botched and Otherwise. Appendix 10D. Unweighted and Weighted Least Squares. References and Further Reading. Chapter 11. Modelling Relationships, Sequential Assembly: Basics for Response Surface Methods. 11.1. Some Empirical Models. 11.2. Some Experimental Designs and the Design Information Function. 11.3. Is the Surface Sufficiently Well Estimated? 11.4. Sequential Design Strategy. 11.5. Canonical Analysis. 11.6. Box-Behnken Designs. References and Further Reading. Chapter 12. Some Applications of Response Surface Methods. 12.1. Iterative Experimentation To Improve a Product Design. 12.2. Simplification of a Response Function by Data Transformation. 12.3. Detecting and Exploiting Active and Inactive Factor Spaces for Multiple-Response Data. 12.4. Exploring Canonical Factor Spaces. 12.5. From Empiricism to Mechanism. 12.6. Uses of RSM. Appendix 12A. Average Variance of y. Appendix 12B. References and Further Reading. Chapter 13. Designing Robust Products: An Introduction. 13.1. Environmental Robustness. 13.2. Robustness To Component Variation. Appendix 13A. A Mathematical Formulation for Environmental Robustness. Appendix 13B. Choice of Criteria. References and Further Reading. Chapter 14. Process Control, Forecasting and Times Series: An Introduction. 14.1. Process Monitoring. 14.2. The Exponentially Weighted Moving Average. 14.3. The CuSum Chart. 14.4. Process Adjustment. 14.5. A Brief Look At Some Time Series Models and Applications. 14.6. Using a Model to Make a Forecast. 14.7. Intervention Analysis: A Los Angeles Air Pollution Example. References and Further Reading. Chapter 15. Evolutionary Process Operation. 15.1. More than One Factor. 15.2. Multiple Responses. 15.3. The Evolutionary Process Operation Committee. References and Further Reading. Appendix Tables. Author Index. Subject Index.

read more

Citations
More filters
Journal ArticleDOI

Adaptive Particle Swarm Optimization

TL;DR: An adaptive particle swarm optimization that features better search efficiency than classical particle Swarm optimization (PSO) is presented and can perform a global search over the entire search space with faster convergence speed.
Book

Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction

TL;DR: In this paper, two world-renowned experts present statistical methods for studying causal in nature: what would happen to individuals, or to groups, if part of their environment were changed?
Book

Verification and Validation in Scientific Computing

TL;DR: A comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations that are described by partial differential and integral equations and the simulations that result from their numerical solution.
Journal ArticleDOI

Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices via Stated Preference Experiments

TL;DR: This paper proposed a new causal estimand and showed that it can be nonparametrically identified and easily estimated from conjoint data using a fully randomized design, and then demonstrate the value of these techniques through empirical applications to voter decision making and attitudes toward immigrants.
Journal ArticleDOI

Statistical practice in high-throughput screening data analysis

TL;DR: It is argued that replicate measurements are needed to verify assumptions of current methods and to suggest data analysis strategies when assumptions are not met, and the integration of replicates with robust statistical methods in primary screens will facilitate the discovery of reliable hits, ultimately improving the sensitivity and specificity of the screening process.