scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Statistics for Spatial Data.

01 Mar 1993-The Statistician (John Wiley & Sons, Ltd)-Vol. 42, Iss: 1, pp 73-73
About: This article is published in The Statistician.The article was published on 1993-03-01. It has received 6278 citations till now. The article focuses on the topics: Spatial analysis.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a new general class of local indicators of spatial association (LISA) is proposed, which allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation.
Abstract: The capabilities for visualization, rapid data retrieval, and manipulation in geographic information systems (GIS) have created the need for new techniques of exploratory data analysis that focus on the “spatial” aspects of the data. The identification of local patterns of spatial association is an important concern in this respect. In this paper, I outline a new general class of local indicators of spatial association (LISA) and show how they allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation. The LISA statistics serve two purposes. On one hand, they may be interpreted as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi and G*i statistics of Getis and Ord (1992). On the other hand, they may be used to assess the influence of individual locations on the magnitude of the global statistic and to identify “outliers,” as in Anselin's Moran scatterplot (1993a). An initial evaluation of the properties of a LISA statistic is carried out for the local Moran, which is applied in a study of the spatial pattern of conflict for African countries and in a number of Monte Carlo simulations.

8,933 citations

Book
02 Sep 2011
TL;DR: This chapter discusses the role of asymptotics for BLPs, and applications of equivalence and orthogonality of Gaussian measures to linear prediction, and the importance of Observations not part of a sequence.
Abstract: 1 Linear Prediction.- 1.1 Introduction.- 1.2 Best linear prediction.- Exercises.- 1.3 Hilbert spaces and prediction.- Exercises.- 1.4 An example of a poor BLP.- Exercises.- 1.5 Best linear unbiased prediction.- Exercises.- 1.6 Some recurring themes.- The Matern model.- BLPs and BLUPs.- Inference for differentiable random fields.- Nested models are not tenable.- 1.7 Summary of practical suggestions.- 2 Properties of Random Fields.- 2.1 Preliminaries.- Stationarity.- Isotropy.- Exercise.- 2.2 The turning bands method.- Exercise.- 2.3 Elementary properties of autocovariance functions.- Exercise.- 2.4 Mean square continuity and differentiability.- Exercises.- 2.5 Spectral methods.- Spectral representation of a random field.- Bochner's Theorem.- Exercises.- 2.6 Two corresponding Hilbert spaces.- An application to mean square differentiability.- Exercises.- 2.7 Examples of spectral densities on 112.- Rational spectral densities.- Principal irregular term.- Gaussian model.- Triangular autocovariance functions.- Matern class.- Exercises.- 2.8 Abelian and Tauberian theorems.- Exercises.- 2.9 Random fields with nonintegrable spectral densities.- Intrinsic random functions.- Semivariograms.- Generalized random fields.- Exercises.- 2.10 Isotropic autocovariance functions.- Characterization.- Lower bound on isotropic autocorrelation functions.- Inversion formula.- Smoothness properties.- Matern class.- Spherical model.- Exercises.- 2.11 Tensor product autocovariances.- Exercises.- 3 Asymptotic Properties of Linear Predictors.- 3.1 Introduction.- 3.2 Finite sample results.- Exercise.- 3.3 The role of asymptotics.- 3.4 Behavior of prediction errors in the frequency domain.- Some examples.- Relationship to filtering theory.- Exercises.- 3.5 Prediction with the wrong spectral density.- Examples of interpolation.- An example with a triangular autocovariance function.- More criticism of Gaussian autocovariance functions.- Examples of extrapolation.- Pseudo-BLPs with spectral densities misspecified at high frequencies.- Exercises.- 3.6 Theoretical comparison of extrapolation and ointerpolation.- An interpolation problem.- An extrapolation problem.- Asymptotics for BLPs.- Inefficiency of pseudo-BLPs with misspecified high frequency behavior.- Presumed mses for pseudo-BLPs with misspecified high frequency behavior.- Pseudo-BLPs with correctly specified high frequency behavior.- Exercises.- 3.7 Measurement errors.- Some asymptotic theory.- Exercises.- 3.8 Observations on an infinite lattice.- Characterizing the BLP.- Bound on fraction of mse of BLP attributable to a set of frequencies.- Asymptotic optimality of pseudo-BLPs.- Rates of convergence to optimality.- Pseudo-BLPs with a misspecified mean function.- Exercises.- 4 Equivalence of Gaussian Measures and Prediction.- 4.1 Introduction.- 4.2 Equivalence and orthogonality of Gaussian measures.- Conditions for orthogonality.- Gaussian measures are equivalent or orthogonal.- Determining equivalence or orthogonality for periodic random fields.- Determining equivalence or orthogonality for nonperiodic random fields.- Measurement errors and equivalence and orthogonality.- Proof of Theorem 1.- Exercises.- 4.3 Applications of equivalence of Gaussian measures to linear prediction.- Asymptotically optimal pseudo-BLPs.- Observations not part of a sequence.- A theorem of Blackwell and Dubins.- Weaker conditions for asymptotic optimality of pseudo-BLPs.- Rates of convergence to asymptotic optimality.- Asymptotic optimality of BLUPs.- Exercises.- 4.4 Jeffreys's law.- A Bayesian version.- Exercises.- 5 Integration of Random Fields.- 5.1 Introduction.- 5.2 Asymptotic properties of simple average.- Results for sufficiently smooth random fields.- Results for sufficiently rough random fields.- Exercises.- 5.3 Observations on an infinite lattice.- Asymptotic mse of BLP.- Asymptotic optimality of simple average.- Exercises.- 5.4 Improving on the sample mean.- Approximating $$\int_0^1 {\exp } (ivt)dt$$.- Approximating $$\int_{{{[0,1]}^d}} {\exp (i{\omega ^T}x)} dx$$ in more than one dimension.- Asymptotic properties of modified predictors.- Are centered systematic samples good designs?.- Exercises.- 5.5 Numerical results.- Exercises.- 6 Predicting With Estimated Parameters.- 6.1 Introduction.- 6.2 Microergodicity and equivalence and orthogonality of Gaussian measures.- Observations with measurement error.- Exercises.- 6.3 Is statistical inference for differentiable processes possible?.- An example where it is possible.- Exercises.- 6.4 Likelihood Methods.- Restricted maximum likelihood estimation.- Gaussian assumption.- Computational issues.- Some asymptotic theory.- Exercises.- 6.5 Matern model.- Exercise.- 6.6 A numerical study of the Fisher information matrix under the Matern model.- No measurement error and?unknown.- No measurement error and?known.- Observations with measurement error.- Conclusions.- Exercises.- 6.7 Maximum likelihood estimation for a periodic version of the Matern model.- Discrete Fourier transforms.- Periodic case.- Asymptotic results.- Exercises.- 6.8 Predicting with estimated parameters.- Jeffreys's law revisited.- Numerical results.- Some issues regarding asymptotic optimality.- Exercises.- 6.9 An instructive example of plug-in prediction.- Behavior of plug-in predictions.- Cross-validation.- Application of Matern model.- Conclusions.- Exercises.- 6.10 Bayesian approach.- Application to simulated data.- Exercises.- A Multivariate Normal Distributions.- B Symbols.- References.

2,998 citations

01 Jan 2009

2,933 citations


Cites methods from "Statistics for Spatial Data."

  • ...The variogram has been suggested as a useful diagnostic for assisting with the Variogram identification of appropriate variance models for spatial data (Cressie, 1991). Gilmour et al. (1997) demonstrate its usefulness for the identification of the sources of variation in the analysis of field experiments....

    [...]

  • ...The variogram has been suggested as a useful diagnostic for assisting with theVariogram identification of appropriate variance models for spatial data (Cressie, 1991)....

    [...]

  • ...There has been a large amount of interest in developing techniques for the analysis of spatial data both in the context of field experiments and geostatistical data (see for example, Cullis and Gleeson, 1991; Cressie, 1991; Gilmour et al., 1997)....

    [...]

  • ...The variogram has been suggested as a useful diagnostic for assisting with the Variogram identification of appropriate variance models for spatial data (Cressie, 1991)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors describe six different statistical approaches to infer correlates of species distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations.
Abstract: Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species’ distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method’s implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing

2,820 citations


Cites background from "Statistics for Spatial Data."

  • ...Trend surface GAM does not address the problem of spatial autocorrelation, but merely accounts for trends in the data across larger geographical distances (Cressie 1993)....

    [...]

Journal ArticleDOI
TL;DR: A detailed explanation of how MaxEnt works and a prospectus on modeling options are provided to enable users to make informed decisions when preparing data, choosing settings and interpreting output to highlight the need for making biologically motivated modeling decisions.
Abstract: The MaxEnt software package is one of the most popular tools for species distribution and environmental niche modeling, with over 1000 published applications since 2006. Its popularity is likely for two reasons: 1) MaxEnt typically outperforms other methods based on predictive accuracy and 2) the software is particularly easy to use. MaxEnt users must make a number of decisions about how they should select their input data and choose from a wide variety of settings in the software package to build models from these data. The underlying basis for making these decisions is unclear in many studies, and default settings are apparently chosen, even though alternative settings are often more appropriate. In this paper, we provide a detailed explanation of how MaxEnt works and a prospectus on modeling options to enable users to make informed decisions when preparing data, choosing settings and interpreting output. We explain how the choice of background samples reflects prior assumptions, how nonlinear functions of environmental variables (features) are created and selected, how to account for environmentally biased sampling, the interpretation of the various types of model output and the challenges for model evaluation. We demonstrate MaxEnt’s calculations using both simplified simulated data and occurrence data from South Africa on species of the flowering plant family Proteaceae. Throughout, we show how MaxEnt’s outputs vary in response to different settings to highlight the need for making biologically motivated modeling decisions.

2,370 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a new general class of local indicators of spatial association (LISA) is proposed, which allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation.
Abstract: The capabilities for visualization, rapid data retrieval, and manipulation in geographic information systems (GIS) have created the need for new techniques of exploratory data analysis that focus on the “spatial” aspects of the data. The identification of local patterns of spatial association is an important concern in this respect. In this paper, I outline a new general class of local indicators of spatial association (LISA) and show how they allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation. The LISA statistics serve two purposes. On one hand, they may be interpreted as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi and G*i statistics of Getis and Ord (1992). On the other hand, they may be used to assess the influence of individual locations on the magnitude of the global statistic and to identify “outliers,” as in Anselin's Moran scatterplot (1993a). An initial evaluation of the properties of a LISA statistic is carried out for the local Moran, which is applied in a study of the spatial pattern of conflict for African countries and in a number of Monte Carlo simulations.

8,933 citations

Journal ArticleDOI
TL;DR: This paper introduces the reader to a response surface methodology that is especially good at modeling the nonlinear, multimodal functions that often occur in engineering and shows how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule.
Abstract: In many engineering optimization problems, the number of function evaluations is severely limited by time or cost. These problems pose a special challenge to the field of global optimization, since existing methods often require more function evaluations than can be comfortably afforded. One way to address this challenge is to fit response surfaces to data collected by evaluating the objective and constraint functions at a few points. These surfaces can then be used for visualization, tradeoff analysis, and optimization. In this paper, we introduce the reader to a response surface methodology that is especially good at modeling the nonlinear, multimodal functions that often occur in engineering. We then show how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule. The key to using response surfaces for global optimization lies in balancing the need to exploit the approximating surface (by sampling where it is minimized) with the need to improve the approximation (by sampling where prediction error may be high). Striking this balance requires solving certain auxiliary problems which have previously been considered intractable, but we show how these computational obstacles can be overcome.

6,914 citations

Journal ArticleDOI
TL;DR: A Bayesian calibration technique which improves on this traditional approach in two respects and attempts to correct for any inadequacy of the model which is revealed by a discrepancy between the observed data and the model predictions from even the best‐fitting parameter values is presented.
Abstract: We consider prediction and uncertainty analysis for systems which are approximated using complex mathematical models. Such models, implemented as computer codes, are often generic in the sense that by a suitable choice of some of the model's input parameters the code can be used to predict the behaviour of the system in a variety of specific applications. However, in any specific application the values of necessary parameters may be unknown. In this case, physical observations of the system in the specific context are used to learn about the unknown parameters. The process of fitting the model to the observed data by adjusting the parameters is known as calibration. Calibration is typically effected by ad hoc fitting, and after calibration the model is used, with the fitted input values, to predict the future behaviour of the system. We present a Bayesian calibration technique which improves on this traditional approach in two respects. First, the predictions allow for all sources of uncertainty, including the remaining uncertainty over the fitted parameters. Second, they attempt to correct for any inadequacy of the model which is revealed by a discrepancy between the observed data and the model predictions from even the best-fitting parameter values. The method is illustrated by using data from a nuclear radiation release at Tomsk, and from a more complex simulated nuclear accident exercise.

3,745 citations

Book
02 Sep 2011
TL;DR: This chapter discusses the role of asymptotics for BLPs, and applications of equivalence and orthogonality of Gaussian measures to linear prediction, and the importance of Observations not part of a sequence.
Abstract: 1 Linear Prediction.- 1.1 Introduction.- 1.2 Best linear prediction.- Exercises.- 1.3 Hilbert spaces and prediction.- Exercises.- 1.4 An example of a poor BLP.- Exercises.- 1.5 Best linear unbiased prediction.- Exercises.- 1.6 Some recurring themes.- The Matern model.- BLPs and BLUPs.- Inference for differentiable random fields.- Nested models are not tenable.- 1.7 Summary of practical suggestions.- 2 Properties of Random Fields.- 2.1 Preliminaries.- Stationarity.- Isotropy.- Exercise.- 2.2 The turning bands method.- Exercise.- 2.3 Elementary properties of autocovariance functions.- Exercise.- 2.4 Mean square continuity and differentiability.- Exercises.- 2.5 Spectral methods.- Spectral representation of a random field.- Bochner's Theorem.- Exercises.- 2.6 Two corresponding Hilbert spaces.- An application to mean square differentiability.- Exercises.- 2.7 Examples of spectral densities on 112.- Rational spectral densities.- Principal irregular term.- Gaussian model.- Triangular autocovariance functions.- Matern class.- Exercises.- 2.8 Abelian and Tauberian theorems.- Exercises.- 2.9 Random fields with nonintegrable spectral densities.- Intrinsic random functions.- Semivariograms.- Generalized random fields.- Exercises.- 2.10 Isotropic autocovariance functions.- Characterization.- Lower bound on isotropic autocorrelation functions.- Inversion formula.- Smoothness properties.- Matern class.- Spherical model.- Exercises.- 2.11 Tensor product autocovariances.- Exercises.- 3 Asymptotic Properties of Linear Predictors.- 3.1 Introduction.- 3.2 Finite sample results.- Exercise.- 3.3 The role of asymptotics.- 3.4 Behavior of prediction errors in the frequency domain.- Some examples.- Relationship to filtering theory.- Exercises.- 3.5 Prediction with the wrong spectral density.- Examples of interpolation.- An example with a triangular autocovariance function.- More criticism of Gaussian autocovariance functions.- Examples of extrapolation.- Pseudo-BLPs with spectral densities misspecified at high frequencies.- Exercises.- 3.6 Theoretical comparison of extrapolation and ointerpolation.- An interpolation problem.- An extrapolation problem.- Asymptotics for BLPs.- Inefficiency of pseudo-BLPs with misspecified high frequency behavior.- Presumed mses for pseudo-BLPs with misspecified high frequency behavior.- Pseudo-BLPs with correctly specified high frequency behavior.- Exercises.- 3.7 Measurement errors.- Some asymptotic theory.- Exercises.- 3.8 Observations on an infinite lattice.- Characterizing the BLP.- Bound on fraction of mse of BLP attributable to a set of frequencies.- Asymptotic optimality of pseudo-BLPs.- Rates of convergence to optimality.- Pseudo-BLPs with a misspecified mean function.- Exercises.- 4 Equivalence of Gaussian Measures and Prediction.- 4.1 Introduction.- 4.2 Equivalence and orthogonality of Gaussian measures.- Conditions for orthogonality.- Gaussian measures are equivalent or orthogonal.- Determining equivalence or orthogonality for periodic random fields.- Determining equivalence or orthogonality for nonperiodic random fields.- Measurement errors and equivalence and orthogonality.- Proof of Theorem 1.- Exercises.- 4.3 Applications of equivalence of Gaussian measures to linear prediction.- Asymptotically optimal pseudo-BLPs.- Observations not part of a sequence.- A theorem of Blackwell and Dubins.- Weaker conditions for asymptotic optimality of pseudo-BLPs.- Rates of convergence to asymptotic optimality.- Asymptotic optimality of BLUPs.- Exercises.- 4.4 Jeffreys's law.- A Bayesian version.- Exercises.- 5 Integration of Random Fields.- 5.1 Introduction.- 5.2 Asymptotic properties of simple average.- Results for sufficiently smooth random fields.- Results for sufficiently rough random fields.- Exercises.- 5.3 Observations on an infinite lattice.- Asymptotic mse of BLP.- Asymptotic optimality of simple average.- Exercises.- 5.4 Improving on the sample mean.- Approximating $$\int_0^1 {\exp } (ivt)dt$$.- Approximating $$\int_{{{[0,1]}^d}} {\exp (i{\omega ^T}x)} dx$$ in more than one dimension.- Asymptotic properties of modified predictors.- Are centered systematic samples good designs?.- Exercises.- 5.5 Numerical results.- Exercises.- 6 Predicting With Estimated Parameters.- 6.1 Introduction.- 6.2 Microergodicity and equivalence and orthogonality of Gaussian measures.- Observations with measurement error.- Exercises.- 6.3 Is statistical inference for differentiable processes possible?.- An example where it is possible.- Exercises.- 6.4 Likelihood Methods.- Restricted maximum likelihood estimation.- Gaussian assumption.- Computational issues.- Some asymptotic theory.- Exercises.- 6.5 Matern model.- Exercise.- 6.6 A numerical study of the Fisher information matrix under the Matern model.- No measurement error and?unknown.- No measurement error and?known.- Observations with measurement error.- Conclusions.- Exercises.- 6.7 Maximum likelihood estimation for a periodic version of the Matern model.- Discrete Fourier transforms.- Periodic case.- Asymptotic results.- Exercises.- 6.8 Predicting with estimated parameters.- Jeffreys's law revisited.- Numerical results.- Some issues regarding asymptotic optimality.- Exercises.- 6.9 An instructive example of plug-in prediction.- Behavior of plug-in predictions.- Cross-validation.- Application of Matern model.- Conclusions.- Exercises.- 6.10 Bayesian approach.- Application to simulated data.- Exercises.- A Multivariate Normal Distributions.- B Symbols.- References.

2,998 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe six different statistical approaches to infer correlates of species distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations.
Abstract: Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species’ distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method’s implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing

2,820 citations