scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

21 May 2007-IEEE\/OSA Journal of Display Technology (IEEE)-Vol. 3, Iss: 2, pp 160-175
TL;DR: In this paper, the status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented and light extraction techniques are reviewed.
Abstract: Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for "warm" white color temperatures (~3000-4000 K) and high color rendering (CRI>80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1times1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs

Content maybe subject to copyright    Report

We
are sorry
Due to the copyright law, we have to delete the file.
To receive the file, send an email to info [@] GigaPaper.ir.
You can download from http://findpdf.ir/Free-Download-Article/
To download all
http://amazon.com/
and
http://books.google.com/
books, you can email the book's
name and e-mail to post the PDF. The cost of emailing
each book is
2$.
Payment methods
Buy
for yourself
an amazon.com giftcode in $
USD (for the amount you wish to
buy Ebooks), using
any of the following payment options:
Credit/Debit Card at amazon.com by sending the code to your own email address
or alternatively...
PayPal with your PayPal account [US account holders only]
BitCoin with Copay wallet available on all platforms/devices and Chrome browser
[Worldwide!]. Alternatively you can use Bitcoin to buy amazon.com giftcodes
on egifter.com and/or gyft.com
Cash in almost every retail/drug store in USA
OUR Web sites
http://www.gigapaper.ir
http://downloadpaper.ir/
http://unipassword.ir/
http://downloadmaghale.ir/
http://downloadpaper.paak-mech.com/
Citations
More filters
Journal ArticleDOI
Shi Ye1, F. Xiao1, Y.X. Pan1, Y. Y. Ma1, Qi Zhang1 
TL;DR: In this article, the most recent advances in the synthesis and application of phosphors for white light-emitting diodes (pc-WLEDs) with emphasis specifically on: (a) principles to tune the excitation and emission spectra of the phosphors: prediction according to crystal field theory, and structural chemistry characteristics (e.g. covalence of chemical bonds, electronegativity, and polarization effects of element); (b) pc-W LEDs with phosphors excited by blue-LED chips: phosphor characteristics, structure, and activated ions
Abstract: Phosphor-converted white light-emitting diodes (pc-WLEDs) are emerging as an indispensable solid-state light source for the next generation lighting industry and display systems due to their unique properties including but not limited to energy savings, environment-friendliness, small volume, and long persistence. Until now, major challenges in pc-WLEDs have been to achieve high luminous efficacy, high chromatic stability, brilliant color-rending properties, and price competitiveness against fluorescent lamps, which rely critically on the phosphor properties. A comprehensive understanding of the nature and limitations of phosphors and the factors dominating the general trends in pc-WLEDs is of fundamental importance for advancing technological applications. This report aims to provide the most recent advances in the synthesis and application of phosphors for pc-WLEDs with emphasis specifically on: (a) principles to tune the excitation and emission spectra of phosphors: prediction according to crystal field theory, and structural chemistry characteristics (e.g. covalence of chemical bonds, electronegativity, and polarization effects of element); (b) pc-WLEDs with phosphors excited by blue-LED chips: phosphor characteristics, structure, and activated ions (i.e. Ce 3+ and Eu 2+ ), including YAG:Ce, other garnets, non-garnets, sulfides, and (oxy)nitrides; (c) pc-WLEDs with phosphors excited by near ultraviolet LED chips: single-phased white-emitting phosphors (e.g. Eu 2+ –Mn 2+ activated phosphors), red-green-blue phosphors, energy transfer, and mechanisms involved; and (d) new clues for designing novel high-performance phosphors for pc-WLEDs based on available LED chips. Emphasis shall also be placed on the relationships among crystal structure, luminescence properties, and device performances. In addition, applications, challenges and future advances of pc-WLEDs will be discussed.

1,860 citations

Journal ArticleDOI
TL;DR: More than one-fifth of US electricity is used to power artificial lighting as discussed by the authors and light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.
Abstract: More than one-fifth of US electricity is used to power artificial lighting. Light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.

1,779 citations

Journal ArticleDOI
TL;DR: In this paper, the luminescence quenching temperature of Yttrium aluminum garnet (YAG) doped with Ce3+ is measured and analyzed for a wide range of Ce concentrations (between 0033% and 33%).
Abstract: Yttrium aluminum garnet (YAG) doped with Ce3+ is the phosphor of choice for the conversion of blue to yellow light in the rapidly expanding market of white light LEDs, but it is generally thought to suffer from a low luminescence quenching temperature The luminescence quenching temperature is an important parameter, especially in high-power LEDs, but surprisingly no systematic research has been done to measure and understand the temperature quenching of the yellow Ce luminescence in YAG:Ce Here we report on the luminescence temperature quenching in YAG:Ce For a wide range of Ce concentrations (between 0033% and 33%) the temperature dependence of the emission intensity and the luminescence lifetimes are reported The intrinsic quenching temperature of the Ce luminescence is shown to be very high (>700 K) The lower quenching temperatures reported in the literature are explained by thermally activated concentration quenching (for highly doped systems) and the temperature dependence of the oscillator st

1,177 citations

Journal ArticleDOI
TL;DR: A prototype phosphor-converted LED (pc-LED), employing Sr[LiAl3N4]:Eu(2+) as the red-emitting component, already shows an increase of 14% in luminous efficacy compared with a commercially available high colour rendering index (CRI) LED, together with an excellent colour rendition.
Abstract: To facilitate the next generation of high-power white-light-emitting diodes (white LEDs), the discovery of more efficient red-emitting phosphor materials is essential. In this regard, the hardly explored compound class of nitridoaluminates affords a new material with superior luminescence properties. Doped with Eu(2+), Sr[LiAl3N4] emerged as a new high-performance narrow-band red-emitting phosphor material, which can efficiently be excited by GaN-based blue LEDs. Owing to the highly efficient red emission at λ(max) ~ 650 nm with a full-width at half-maximum of ~1,180 cm(-1) (~50 nm) that shows only very low thermal quenching (>95% relative to the quantum efficiency at 200 °C), a prototype phosphor-converted LED (pc-LED), employing Sr[LiAl3N4]:Eu(2+) as the red-emitting component, already shows an increase of 14% in luminous efficacy compared with a commercially available high colour rendering index (CRI) LED, together with an excellent colour rendition (R(a)8 = 91, R9 = 57). Therefore, we predict great potential for industrial applications in high-power white pc-LEDs.

1,144 citations

Journal ArticleDOI
TL;DR: In this paper, the Auger recombination coefficient in quasi-bulk InxGa1−xN (x∼9%−15%) layers grown on GaN (0001) is measured by a photoluminescence technique.
Abstract: The Auger recombination coefficient in quasi-bulk InxGa1−xN (x∼9%–15%) layers grown on GaN (0001) is measured by a photoluminescence technique. The samples vary in InN composition, thickness, and threading dislocation density. Throughout this sample set, the measured Auger coefficient ranges from 1.4×10−30to2.0×10−30cm6s−1. The authors argue that an Auger coefficient of this magnitude, combined with the high carrier densities reached in blue and green InGaN∕GaN (0001) quantum well light-emitting diodes (LEDs), is the reason why the maximum external quantum efficiency in these devices is observed at very low current densities. Thus, Auger recombination is the primary nonradiative path for carriers at typical LED operating currents and is the reason behind the drop in efficiency with increasing current even under room-temperature (short-pulsed, low-duty-factor) injection conditions.

1,124 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations


"Status and Future of High-Power Lig..." refers background in this paper

  • ...Energy bandgap versus lattice constant for wurtzite III-nitride and zincblende III-phosphide semiconductor alloy systems employing Al, In, and Ga [3], [4]....

    [...]

Book
21 Mar 1997
TL;DR: The physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GAN p-type GaN InGaN Zn and Si co-doped GaN double-heterostructure blue and blue green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGAN MQW LDs latest results as discussed by the authors.
Abstract: Physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GaN p-Type GaN InGaN Zn and Si co-doped InGaN/AlGaN double-heterostructure blue and blue-green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGaN MQW LDs latest results - lasers with self-organized InGaN quantum dots

3,805 citations


"Status and Future of High-Power Lig..." refers background in this paper

  • ...” The excitation spectrum for YAG at 440‐460 nm is well-matched to blue InGaN-GaN LEDs, and its yellow emission provides an opportunity for obtaining a white point in the 4000‐8000-K correlated color temperature (CCT) region by simply mixing in a portion of the blue “pump” light [51], [ 52 ]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the spontaneous polarization, dynamical Born charges, and piezoelectric constants of the III-V nitrides AlN, GaN, and InN are studied ab initio using the Berry-phase approach to polarization in solids.
Abstract: The spontaneous polarization, dynamical Born charges, and piezoelectric constants of the III-V nitrides AlN, GaN, and InN are studied ab initio using the Berry-phase approach to polarization in solids. The piezoelectric constants are found to be up to ten times larger than in conventional III-V and II-VI semiconductor compounds, and comparable to those of ZnO. Further properties at variance with those of conventional III-V compounds are the sign of the piezoelectric constants (positive as in II-VI compounds) and the very large spontaneous polarization.

2,785 citations


"Status and Future of High-Power Lig..." refers background in this paper

  • ...Furthermore, the wurtzite crystal structure provides for spontaneous and piezoelectric polarization within the InGaN layer that causes large built-in electric fields along the -axis [20], [21], complicating device operation and characterization of basic optical processes....

    [...]

Journal ArticleDOI
TL;DR: In this article, the InGaN multi-quantum-well (MQW) structure was used for laser diodes, which produced 215mW at a forward current of 2.3
Abstract: InGaN multi-quantum-well (MQW) structure laser diodes (LDs) fabricated from III-V nitride materials were grown by metalorganic chemical vapor deposition on sapphire substrates. The mirror facet for a laser cavity was formed by etching of III-V nitride films without cleaving. As an active layer, the InGaN MQW structure was used. The InGaN MQW LDs produced 215 mW at a forward current of 2.3 A, with a sharp peak of light output at 417 nm that had a full width at half-maximum of 1.6 nm under the pulsed current injection at room temperature. The laser threshold current density was 4 kA/cm2. The emission wavelength is the shortest one ever generated by a semiconductor laser diode.

2,100 citations

Journal ArticleDOI
TL;DR: In this article, the growth condition dependence of crystalline quality is also studied, and the narrowest x-ray rocking curve from the (0006) plane is 2.70' and from the 2024 plane is 1.86' on sapphire substrates.
Abstract: Atmospheric pressure metalorganic vapor phase epitaxial growth and characterization of high quality GaN on sapphire (0001) substrates are reported. Using AlN buffer layers, GaN thin films with optically flat surfaces free from cracks are successfully grown. The narrowest x‐ray rocking curve from the (0006) plane is 2.70’ and from the (2024) plane is 1.86’. Photoluminescence spectra show strong near band edge emission. The growth condition dependence of crystalline quality is also studied.

2,035 citations


"Status and Future of High-Power Lig..." refers background in this paper

  • ...Key breakthroughs [13], [14] in the 1980s ushered in the modern era of GaN-based optoelectronic device development and led to the realization of high brightness blue and green LEDs [15], [16] and laser diodes [17] in the subsequent decade....

    [...]