scispace - formally typeset
Journal ArticleDOI

Stochastic approach to chemical kinetics

Donald A. McQuarrie
- 01 Dec 1967 - 
- Vol. 4, Iss: 3, pp 413-478
Reads0
Chats0
TLDR
A summary of the various stochastic approaches and applications to chemical reaction kinetics can be found in this paper, but before discussing these we first briefly introduce the basic ideas and definitions of classical or deterministic chemical kinetics.
Abstract
In this article we shall present a summary of the various stochastic approaches and applications to chemical reaction kinetics, but before discussing these we first briefly introduce the basic ideas and definitions of classical or deterministic chemical kinetics. One of the basic questions to which chemists address themselves is the rate of chemical reactions, or in other words, how long it takes for a chemical reaction to attain completion, or equilibrium. Apparently the first significant quantitative investigation was made in 1850 by L. Wilhelmy [93]. He studied the inversion of sucrose (cane sugar) in aqueous solutions of acids, whose reaction is He found empirically that the rate of decrease of concentration of sucrose was simply proportional to the concentration remaining unconverted, i.e., if S(t) is the concentration of sucrose, then The constant of proportionality is called the rate constant of the reaction. If S o is the initial concentration of sucrose, then Since then an enormous number of reactions has been studied and the field of chemical kinetics is now one of the largest areas of chemical research. The importance of the field lies in the fact that it yields concise expressions for the time dependence of reactions, predicts yields, optimum economic conditions, and gives one much insight into the actual molecular processes involved. The detailed molecular picture of a reaction process is called the mechanism of the reaction.

read more

Citations
More filters
Journal ArticleDOI

A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions

TL;DR: In this paper, an exact method is presented for numerically calculating, within the framework of the stochastic formulation of chemical kinetics, the time evolution of any spatially homogeneous mixture of molecular species which interreact through a specified set of coupled chemical reaction channels.
Journal ArticleDOI

Reaction-rate theory: fifty years after Kramers

TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Journal ArticleDOI

Stochastic Simulation of Chemical Kinetics

TL;DR: Some recent advances in methods for using that theory to make numerical simulations include improvements to the exact stochastic simulation algorithm (SSA) and the approximate explicit tau-leaping procedure, as well as the development of two approximate strategies for simulating systems that are dynamically stiff.
Journal ArticleDOI

Approximate accelerated stochastic simulation of chemically reacting systems

TL;DR: With further refinement, the τ-leap method should provide a viable way of segueing from the exact SSA to the approximate chemical Langevin equation, and thence to the conventional deterministic reaction rate equation, as the system size becomes larger.
Journal ArticleDOI

The chemical Langevin equation

TL;DR: In this article, it is shown that the chemical Langevin equation can be derived from the microphysical premise from which the chemical master equation is derived, which leads directly to an approximate time-evolution equation of the Langevin type.
References
More filters
Book

A Course of Modern Analysis

TL;DR: The volume now gives a somewhat exhaustive account of the various ramifications of the subject, which are set out in an attractive manner and should become indispensable, not only as a textbook for advanced students, but as a work of reference to those whose aim is to extend the knowledge of analysis.
Related Papers (5)