scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Stochastic variational inference

TL;DR: Stochastic variational inference lets us apply complex Bayesian models to massive data sets, and it is shown that the Bayesian nonparametric topic model outperforms its parametric counterpart.
Abstract: We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article
01 Jan 2014
TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Abstract: How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.

20,769 citations


Cites background from "Stochastic variational inference"

  • .... An advantage of wake-sleep is that it also applies to models with discrete latent variables. Wake-Sleep has the same computational complexity as AEVB per datapoint. Stochastic variational inference [HBWP13] has recently received increasing interest. Recently, [BJP12] introduced a control variate schemes to reduce the high variance of the na¨ıve gradient estimator discussed in section 2.1, and applied to...

    [...]

Posted Content
TL;DR: In this paper, a stochastic variational inference and learning algorithm was proposed for directed probabilistic models with intractable posterior distributions and large datasets, which scales to large datasets.
Abstract: How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.

4,883 citations

Proceedings Article
19 Jun 2016
TL;DR: A new theoretical framework is developed casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes, which mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy.
Abstract: Deep learning tools have gained tremendous attention in applied machine learning. However such tools for regression and classification do not capture model uncertainty. In comparison, Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost. In this paper we develop a new theoretical framework casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes. A direct result of this theory gives us tools to model uncertainty with dropout NNs - extracting information from existing models that has been thrown away so far. This mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy. We perform an extensive study of the properties of dropout's uncertainty. Various network architectures and nonlinearities are assessed on tasks of regression and classification, using MNIST as an example. We show a considerable improvement in predictive log-likelihood and RMSE compared to existing state-of-the-art methods, and finish by using dropout's uncertainty in deep reinforcement learning.

3,472 citations


Cites methods from "Stochastic variational inference"

  • ...Recent advances in variational inference introduced new techniques into the field such as sampling-based variational inference and stochastic variational inference (Blei et al., 2012; Kingma & Welling, 2013; Rezende et al., 2014; Titsias & LázaroGredilla, 2014; Hoffman et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: For instance, mean-field variational inference as discussed by the authors approximates probability densities through optimization, which is used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling.
Abstract: One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback–Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data...

3,421 citations

Posted Content
TL;DR: In this article, a generative and recognition model is proposed to represent approximate posterior distributions and act as a stochastic encoder of the data, which allows for joint optimisation of the parameters of both the generative model and the recognition model.
Abstract: We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.

3,316 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Abstract: A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two‐dimensional rigid‐sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four‐term virial coefficient expansion.

35,161 citations


"Stochastic variational inference" refers methods in this paper

  • ...In MCMC sampling, we construct a Markov chain over the hidden variables whose stationary distribution is the posterior of interest (Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984; Gelfand and Smith, 1990; Robert and Casella, 2004)....

    [...]

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations


"Stochastic variational inference" refers background or methods in this paper

  • ...…how to use the general algorithm of Section 2 to derive stochastic variational inference for two probabilistic topic models: latent Dirichlet allocation (LDA) (Blei et al., 2003) and its Bayesian nonparametric counterpart, the hierarchical Dirichlet process (HDP) topic model (Teh et al., 2006a)....

    [...]

  • ...Examples include Bayesian mixture models (Ghahramani and Beal, 2000; Attias, 2000), latent Dirichlet allocation (Blei et al., 2003), hidden Markov models (and many variants) (Rabiner, 1989; Fine et al., 1998; Fox et al., 2011b; Paisley and Carin, 2009), Kalman filters (and many variants) (Kalman,…...

    [...]

  • ...Typically, researchers find the “best” number of topics with cross-validation (Blei et al.,2003)....

    [...]

  • ...70 51 v3 [...

    [...]

  • ...We follow the notation of Blei et al. (2003)....

    [...]

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations