scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Streaming instabilities in protoplanetary disks

10 Feb 2005-The Astrophysical Journal (IOP Publishing)-Vol. 620, Iss: 1, pp 459-469
TL;DR: In this article, the authors describe a local, linear instability in a Keplerian disk of solids and gas in which the two components mutually interact via aerodynamic drag, which generates radial drift and triggers unstable modes.
Abstract: Interpenetrating streams of solids and gas in a Keplerian disk produce a local, linear instability. The two components mutually interact via aerodynamic drag, which generates radial drift and triggers unstable modes. The secular instability does not require self-gravity, yet it generates growing particle-density perturbations that could seed planetesimal formation. Growth rates are slower than dynamical but faster than radial drift timescales. Growth rates, like streaming velocities, are maximized for marginal coupling (stopping times comparable to dynamical times). Fastest growth occurs when the solid-to-gas density ratio is order unity and feedback is strongest. Curiously, growth is strongly suppressed when the densities are too nearly equal. The relation between background drift and wave properties is explained by analogy with Howard's semicircle theorem. The three-dimensional, two-fluid equations describe a sixth-order (in the complex frequency) dispersion relation. A terminal velocity approximation allows simplification to an approximate cubic dispersion relation. To describe the simplest manifestation of this instability, we ignore complicating (but possibly relevant) factors such as vertical stratification, dispersion of particle sizes, turbulence, and self-gravity. We consider applications to planetesimal formation and compare our work to other studies of particle-gas dynamics.
Citations
More filters
Journal ArticleDOI
30 Aug 2007-Nature
TL;DR: It is reported that boulders can undergo efficient gravitational collapse in locally overdense regions in the midplane of the disk, and it is found that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes.
Abstract: During the initial stages of planet formation in circumstellar gas disks, dust grains collide and build up larger and larger bodies. How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem: boulders are expected to stick together poorly, and to spiral into the protostar in a few hundred orbits owing to a 'headwind' from the slower rotating gas. Gravitational collapse of the solid component has been suggested to overcome this barrier. But even low levels of turbulence will inhibit sedimentation of solids to a sufficiently dense midplane layer, and turbulence must be present to explain observed gas accretion in protostellar disks. Here we report that boulders can undergo efficient gravitational collapse in locally overdense regions in the midplane of the disk. The boulders concentrate initially in transient high pressure regions in the turbulent gas, and these concentrations are augmented a further order of magnitude by a streaming instability driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar disks.

1,238 citations

Journal ArticleDOI
TL;DR: In this article, a review examines the experimental achievements and puts them into the context of the dust processes in protoplanetary disks, concluding that the formation of planetesimals starts with the growth of fractal dust aggregates, followed by compaction processes.
Abstract: The formation of planetesimals, the kilometer-sized planetary precursors, is still a puzzling process. Considerable progress has been made over the past years in the physical description of the first stages of planetesimal formation, owing to extensive laboratory work. This review examines the experimental achievements and puts them into the context of the dust processes in protoplanetary disks. It has become clear that planetesimal formation starts with the growth of fractal dust aggregates, followed by compaction processes. As the dust-aggregate sizes increase, the mean collision velocity also increases, leading to the stalling of the growth and possibly to fragmentation, once the dust aggregates have reached decimeter sizes. A multitude of hypotheses for the further growth have been proposed, such as very sticky materials, secondary collision processes, enhanced growth at the snow line, or cumulative dust effects with gravitational instability. We will also critically review these ideas.

892 citations

Journal ArticleDOI
TL;DR: The Disk Substructures at High Angular Resolution Project (DSHARP) as mentioned in this paper was the first large-scale project to find and characterize substructures in the spatial distributions of solid particles for a sample of 20 nearby protoplanetary disks, using very high resolution (similar to 0'' 035 or 5 au, FWHM) observations of their 240 GHz (1.25 mm) continuum emission.
Abstract: We introduce the Disk Substructures at High Angular Resolution Project (DSHARP), one of the initial Large Programs conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The primary goal of DSHARP is to find and characterize substructures in the spatial distributions of solid particles for a sample of 20 nearby protoplanetary disks, using very high resolution (similar to 0.'' 035, or 5 au, FWHM) observations of their 240 GHz (1.25 mm) continuum emission. These data provide a first homogeneous look at the small-scale features in disks that are directly relevant to the planet formation process, quantifying their prevalence, morphologies, spatial scales, spacings, symmetry, and amplitudes, for targets with a variety of disk and stellar host properties. We find that these substructures are ubiquitous in this sample of large, bright disks. They are most frequently manifested as concentric, narrow emission rings and depleted gaps, although large-scale spiral patterns and small arc-shaped azimuthal asymmetries are also present in some cases. These substructures are found at a wide range of disk radii (from a few astronomical units to more than 100 au), are usually compact (less than or similar to 10 au), and show a wide range of amplitudes (brightness contrasts). Here we discuss the motivation for the project, describe the survey design and the sample properties, detail the observations and data calibration, highlight some basic results, and provide a general overview of the key conclusions that are presented in more detail in a series of accompanying articles. The DSHARP data-including visibilities, images, calibration scripts, and more-are released for community use at https://almascience.org/alma-data/lp/DSHARP.

822 citations


Cites background from "Streaming instabilities in protopla..."

  • ...…P modulations can slow or trap drifting solids (Whipple 1972; Pinilla et al. 2012a), perhaps concentrating them enough to trigger gravitational and/or streaming instabilities that rapidly convert pebbles to planetesimals (e.g., Youdin & Shu 2002; Youdin & Goodman 2005; Johansen et al. 2009)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors measured the accretion rate onto seed masses ranging from a large planetesimal to a fully grown 10-Earth-mass core and test different particle sizes, concluding that pebble accretion can resolve the long-standing core accretion timescale conflict.
Abstract: The observed lifetimes of gaseous protoplanetary discs place strong constraints on gas and ice giant formation in the core accretion scenario. The approximately 10-Earth-mass solid core responsible for the attraction of the gaseous envelope has to form before gas dissipation in the protoplanetary disc is completed within 1–10 million years. Building up the core by collisions between km-sized planetesimals fails to meet this timescale constraint, especially at wide stellar separations. Nonetheless, gas-giant planets are detected by direct imaging at wide orbital distances. In this paper, we numerically study the growth of cores by the accretion of cm-sized pebbles loosely coupled to the gas. We measure the accretion rate onto seed masses ranging from a large planetesimal to a fully grown 10-Earth-mass core and test different particle sizes. The numerical results are in good agreement with our analytic expressions, indicating the existence of two accretion regimes, one set by the azimuthal and radial particle drift for the lower seed masses and the other, for higher masses, by the velocity at the edge of the Hill sphere. In the former, the optimally accreted particle size increases with core mass, while in the latter the optimal size is centimeters, independent of core mass. We discuss the implications for rapid core growth of gas-giant and ice-giant cores. We conclude that pebble accretion can resolve the long-standing core accretion timescale conflict. This requires a near-unity dust-to-gas ratio in the midplane, particle growth to mm and cm and the formation of massive planetesimals or low radial pressure support. The core growth timescale is shortened by a factor 30–1000 at 5 AU and by a factor 100–10 000 at 50 AU, compared to the gravitationally focused accretion of, respectively, low-scale-height planetesimal fragments or standard km-sized planetesimals.

769 citations


Cites background from "Streaming instabilities in protopla..."

  • ...In dead zones where the MRI does not operate, streaming instabilities can destabilize the relative motion between gas and particles (Youdin & Goodman 2005; Johansen & Youdin 2007; Bai & Stone 2010) and lead to the formation of dense filaments....

    [...]

  • ...The turbulence generated by the streaming instability (Youdin & Goodman 2005) self-regulates the particle midplane density to equal the gas density, independent of particle size....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors presented the results of numerical simulations with more and more realistic physics involved, including various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in their simulations.
Abstract: The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the canonical value for the interstellar medium, km-sized bodies can form in the inner disk ( yrs. However, we find that solid particles get destroyed through collisional fragmentation. Only with the unrealistically high-threshold velocities needed for fragmentation to occur (>30 m/s), particles are able to grow to larger sizes in disks with low α values. We also find that less than 5% of the small dust grains remain in the disk after 1 Myr due to radial drift, no matter whether fragmentation is included in the simulations or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up the coagulation scheme by a factor of ~ 104 .

741 citations


Cites background from "Streaming instabilities in protopla..."

  • ...Moreover, the flow of the gas and the dust can be unstable to the streaming instablity (Youdin & Goodman 2005) which leads to particle clumping, and possibly also to a gravitational collapse of the dust....

    [...]

References
More filters
01 Jan 1956

4,298 citations

01 Jan 1962

3,014 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the results of the first sensitive L-band survey of the intermediate-age (2.5-30 Myr) clusters NGC 2264, NGC 2362, and NGC 1960.
Abstract: We report the results of the first sensitive L-band survey of the intermediate-age (2.5-30 Myr) clusters NGC 2264, NGC 2362, and NGC 1960. We use JHKL colors to obtain a census of the circumstellar disk fractions in each cluster. We find disk fractions of 52% ± 10%, 12% ± 4%, and 3% ± 3% for the three clusters, respectively. Together with our previously published JHKL investigations of the younger NGC 2024, Trapezium, and IC 348 clusters, we have completed the first systematic and homogeneous survey for circumstellar disks in a sample of young clusters that both span a significant range in age (0.3-30 Myr) and contain statistically significant numbers of stars whose masses span nearly the entire stellar mass spectrum. Analysis of the combined survey indicates that the cluster disk fraction is initially very high (≥80%) and rapidly decreases with increasing cluster age, such that one-half the stars within the clusters lose their disks in 3 Myr. Moreover, these observations yield an overall disk lifetime of ~6 Myr in the surveyed cluster sample. This is the timescale for essentially all the stars in a cluster to lose their disks. This should set a meaningful constraint for the planet-building timescale in stellar clusters. The implications of these results for current theories of planet formation are briefly discussed.

1,886 citations


"Streaming instabilities in protopla..." refers background in this paper

  • ...However, the first generation of planetesimals likely formedwithin the gasrich disks are observed to persist for several million years around low-mass stars (Haisch et al. 2001)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, four stages in the accretion of planetesimals are described, the initial stage is the condensation of dust particles from the gaseous solar nebula as it cools.
Abstract: Four stages in the accretion of planetesimals are described. The initial stage is the condensation of dust particles from the gaseous solar nebula as it cools. These dust particles settle into a thin disk which is gravitationally unstable. A first generation of planetesimals, whose radii range up to about 0.1 km, form from the dust disk by direct gravitational collapse to solid densities on a time scale of the order of 1 year. The resulting disk, composed of first-generation planetesimals, is still gravitationally unstable, and the planetesimals are grouped into clusters containing approximately 10,000 members. The contraction of these clusters is controlled by the rate at which gas drag damps their internal rotational and random kinetic energies. On a time scale of a few thousand years, the clusters contract to form a second generation of planetesimals having radii of the order of 5 km. Further coalescence of planetesimals proceeds by direct collisions which seem capable of producing growth at a rate of the order of 15 cm per year at 1 AU.

1,051 citations


"Streaming instabilities in protopla..." refers background in this paper

  • ...The hypothesis that planetesimals form by gravitational collapse of solids that settle onto the disk midplane (Goldreich & Ward 1973; YS02) remains controversial because it is uncertain whether protoplanetary disks are ever suitably quiescent or metalrich enough to allow gravitational instabilities…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the theorem X established by Miles in the preceding paper is given a simpler and more general proof, and further theoretical results concerning the stability of heterogeneous shear flows are also presented, in particular a demonstration that the complex wave velocity of any unstable mode must lie in a certain semicircle.
Abstract: The theorem X established by Miles in the preceding paper is here given a simpler and more general proof. Some further theoretical results concerning the stability of heterogeneous shear flows are also presented, in particular a demonstration that the complex wave velocity of any unstable mode must lie in a certain semicircle.

977 citations


"Streaming instabilities in protopla..." refers background in this paper

  • ...Howard (1961) found that one-dimensional modes, /exp (st i!< þ ikxx), have a wave speed that lies between the minimum andmaximum speeds in the shearing flow,Vmin < !...

    [...]