scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Strength and Power Training in Rehabilitation: Underpinning Principles and Practical Strategies to Return Athletes to High Performance.

28 Feb 2020-Sports Medicine (Sports Med)-Vol. 50, Iss: 2, pp 239-252
TL;DR: Evidence-based strategies to target a resolution of residual deficits in fundamental physical qualities following injury, specifically strength, rate of force development and reactive strength are discussed to reduce the risk of future injury.
Abstract: Injuries have a detrimental impact on team and individual athletic performance. Deficits in maximal strength, rate of force development (RFD), and reactive strength are commonly reported following several musculoskeletal injuries. This article first examines the available literature to identify common deficits in fundamental physical qualities following injury, specifically strength, rate of force development and reactive strength. Secondly, evidence-based strategies to target a resolution of these residual deficits will be discussed to reduce the risk of future injury. Examples to enhance practical application and training programmes have also been provided to show how these can be addressed.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Sep 2018-Pain
TL;DR: It is shown that exercise and regular physical activity decreases excitability and improves inhibition in both the central nervous system (brainstem inhibitory/facilitatory sites) and the immune system.
Abstract: An acute bout of physical activity and exercise can increase pain in individuals with chronic pain, but regular exercise is an effective treatment. This review will discuss these two dichotomous findings by summarizing studies in human and animal subjects. We will provide the data that supports the role of physical activity in modulating central nervous system excitability and inhibition, immune system function, and psychological constructs associated with pain. We show evidence that the sedentary condition is associated with greater excitability and less inhibition in both the central nervous system (brainstem inhibitory/facilitatory sites) and the immune system. We further show that exercise and regular physical activity decreases excitability and improves inhibition in both the central nervous system (brainstem inhibitory/facilitatory sites) and the immune system. We will then discuss the clinical implications of these findings, make recommendations for clinical application of exercise, and suggest future research directions.

117 citations

01 Nov 2015
TL;DR: This review will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone and stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.
Abstract: The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.(1).

87 citations

Journal ArticleDOI
TL;DR: This narrative review examines the available literature, first explaining how specific mechanical loading is converted into positive cellular responses, and benefits related to specific musculoskeletal tissues are discussed.
Abstract: Global health organizations have provided recommendations regarding exercise for the general population Strength training has been included in several position statements due to its multi-systemic benefits In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies

82 citations

Journal ArticleDOI
TL;DR: Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged, but tendon hypertrophy was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness.
Abstract: To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon morphological and mechanical properties) during a 12-week high-load plantar flexion training program. Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion. Tendon force–elongation and stress–strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks. At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young’s modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young’s modulus (87% increase), and at post-8 in CSA (15% increase). Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties.

50 citations

References
More filters
Journal Article
TL;DR: In this article, the optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single and multiple-joint exercises.
Abstract: In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises) For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM) For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC) When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number The recommendation for training frequency is 2-3 d·wk -1 for novice training, 3-4 d·wk -1 for intermediate training, and 4-5 d·wk -1 for advanced training Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity Higher volume, multiple-set programs are recommended for maximizing hypertrophy Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets) It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (<90 s) In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status

3,421 citations

Journal ArticleDOI
TL;DR: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary and emphasis should be placed on multiple-joint exercises, especially those involving the total body.
Abstract: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary. The optimal characteristics of strength-specific programs include the use of both concentric and eccentric muscle actions and the performance of both single- and multiple-joint exercises. It is also recommended that the strength program sequence exercises to optimize the quality of the exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher intensity before lower intensity exercises). For initial resistances, it is recommended that loads corresponding to 8-12 repetition maximum (RM) be used in novice training. For intermediate to advanced training, it is recommended that individuals use a wider loading range, from 1-12 RM in a periodized fashion, with eventual emphasis on heavy loading (1-6 RM) using at least 3-min rest periods between sets performed at a moderate contraction velocity (1-2 s concentric, 1-2 s eccentric). When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number. The recommendation for training frequency is 2-3 d x wk(-1) for novice and intermediate training and 4-5 d x wk(-1) for advanced training. Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency. For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion, with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity. Higher volume, multiple-set programs are recommended for maximizing hypertrophy. Progression in power training entails two general loading strategies: 1) strength training, and 2) use of light loads (30-60% of 1 RM) performed at a fast contraction velocity with 2-3 min of rest between sets for multiple sets per exercise. It is also recommended that emphasis be placed on multiple-joint exercises, especially those involving the total body. For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (> 15) using short rest periods (< 90 s). In the interpretation of this position stand, as with prior ones, the recommendations should be viewed in context of the individual's target goals, physical capacity, and training status.

2,845 citations

Journal ArticleDOI
TL;DR: Increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training, which could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.
Abstract: The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.

1,499 citations

Journal ArticleDOI
TL;DR: It was concluded tentatively that the size or surface area of a motoneuron determines its excitability and hence its responsiveness to stretch-evoked impulses and if this conclusion is correct, it may infer that size is a prime determinant of excitability throughout the nervous system.
Abstract: IN A RECENT PAPER (7) data were presented which indicate that during a gradually increasing stretch of an extensor muscle in a decerebrate cat the smallest alpha motoneurons of the muscle are the first to be discharged and that larger cells are recruited in order of increasing size. Some of the possible explanations for this relationship between size and order of recruitment were discussed briefly. It was concluded tentatively that the size or surface area of a motoneuron determines its excitability and hence its responsiveness to stretch-evoked impulses. If this conclusion is correct, we may infer that size is a prime determinant of excitability throughout the nervous system; if not, the size principle may apply only to motoneurons discharging in response to stretch. Fortunately, it is possible to test the proposed explanation experimentally. If size dictates excitability, the order in which a group of cells are recruited should be the same regardless of the source of the excitation and the particular circuits involved in mediating it. On the other hand, if the organization of the recruitment in input from , the stretch stretch receptors is responsible for the order of reflex, the order shoul .d change wi th d .ifferent types of excitatory input. Experiments were therefore designed in which the relative excitabilities of motoneurons were first determined by means of stretch reflexes and then retested by * means of crossed-extension reflexes, flexor reflexes, monosynaptic reflexes, and electrical “driving” from the muscle ner ve. The relative susceptibilities of neurons of different sizes to several varieties of inhibition were also investigated to ascertain whether inhibitibility bears some regular relation to cell size.

1,104 citations