scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Strengthening of a thin austenitic stainless steel coil by cold wavy rolling with no magnetic and dimensional changes

TL;DR: A comparison of the effects of wavy rolling and cold rolling on microstructure variation, phase evolution, tensile and magnetic properties of a thin coil of Fe-18.47Cr-8.10Ni-0.94Mn austenitic stainless steel was made at room temperature.
Abstract: A comparison of the effects of wavy rolling and cold rolling on microstructure variation, phase evolution, tensile and magnetic properties of a thin coil of Fe-18.47Cr-8.10Ni-0.94Mn austenitic stainless steel was made at room temperature. Wavy rolling led to strengthening with no change in magnetic property and thickness, unlike the conventional cold rolling that changed all these properties by deformation induced martensitic transformation, in addition to substructure evolution. The yield strength of 413 MPa and magnetic saturation 3.7 emu/g under mill-annealed condition increased, respectively, to 1208 MPa and 11.8 emu/g, upon four cycles of wavy rolling. While the maximum yield strength of 1790 MPa could be achieved by combining this stage of four cycles of wavy rolling with subsequent 50% conventional cold rolling, the magnetic saturation increased to 73.3 emu/g by deformation induced martensitic transformation caused by the latter.
References
More filters
Journal ArticleDOI
TL;DR: A brief overview of the available SPD technologies is given in this paper, along with a summary of unusual mechanical, physical and other properties achievable by SPD processing, as well as the challenges this research is facing, some of them generic and some specific to the nanoSPD area.
Abstract: This article presents our take on the area of bulk ultrafine-grained materials produced by severe plastic deformation (SPD). Over the last decades, research activities in this area have grown enormously and have produced interesting results, which we summarise in this concise review. This paper is intended as an introduction to the field for the “uninitiated”, while at the same time highlighting some polemic issues that may be of interest to those specialising in bulk nanomaterials produced by SPD. A brief overview of the available SPD technologies is given, along with a summary of unusual mechanical, physical and other properties achievable by SPD processing. The challenges this research is facing—some of them generic and some specific to the nanoSPD area—are identified and discussed.

1,451 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined severe plastic deformation (SPD) as metal forming processes in which a very large plastic strain is imposed on a bulk process in order to make an ultra-fine grained metal.
Abstract: Processes of severe plastic deformation (SPD) are defined as metal forming processes in which a very large plastic strain is imposed on a bulk process in order to make an ultra-fine grained metal The objective of the SPD processes for creating ultra-fine grained metal is to produce lightweight parts by using high strength metal for the safety and reliability of micro-parts and for environmental harmony In this keynote paper, the fabrication process of equal channel angular pressing (ECAP), accumulative roll-bonding (ARB), high pressure torsion (HPT), and others are introduced, and the properties of metals processed by the SPD processes are shown Moreover, the combined processes developed recently are also explained Finally, the applications of the ultra-fine grained (UFG) metals are discussed

849 citations

Book
01 Jan 1977
TL;DR: Handbook of stainless steels, Handbook of Stainless Steels as mentioned in this paper, Handbook of Stochastic Graphite and Graphite Graphite (HGPG), 2015, p.
Abstract: Handbook of stainless steels , Handbook of stainless steels , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

752 citations

Journal ArticleDOI
TL;DR: In this article, the origin of planar slip in single-phase and precipitation-hardened f.c. alloys is discussed in detail, and it is shown that pronounced short range order (SRO) or short range clustering (SRC) in solid solutions are the main reasons causing plan-ar slip.
Abstract: The origin of planar slip in single-phase and precipitation-hardened f.c.c. alloys is discussed in detail. It is shown that pronounced short range order (SRO) or short range clustering (SRC) in solid solutions are the main reasons causing planar slip. Since the leading dislocations destroy SRO (SRC), glide plane softening occurs; therefore, a yield point or a point of inflection is observed on the stress-strain curve. In precipitation-hardened alloys finely dispersed particles with an atomic order also give rise to planar slip. Distinct planar slip occurs when cross slip is planar too. Other parameters, like a low value of the stacking fault energy or a high value of the yield stress, seem to be only of minor importance for the formation of pronounced planar slip.

646 citations

Journal ArticleDOI
TL;DR: The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction and transmission electron microscopy (TEM) techniques as discussed by the authors.
Abstract: The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyond that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both ɛ-martensite and α′-martensite are observed in the deformation microstructures, indicating the co-existence of stress-induced-transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.

389 citations