scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Stress and defense responses in plant secondary metabolites production

Tasiu Isah1
29 Jul 2019-Biological Research (BioMed Central)-Vol. 52, Iss: 1, pp 39-39
TL;DR: Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.
Abstract: In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: How drought and salinity extensively affect plant growth in agriculture ecosystems is summarized and mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance are discussed.
Abstract: Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.

219 citations


Cites background from "Stress and defense responses in pla..."

  • ...…vitamin C in S. lycopersicum, polyphenols in Fagopyrum esculentum, stevioside in Stevia rebaudiana leaves, allicin in Allium sativum, and rosmarinic acid in Salvia miltiorrhiza leaves, in response to water deficit (Sarker and Oba, 2018; Isah, 2019) enhance the quality of these species/fruits....

    [...]

Journal ArticleDOI
TL;DR: The biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses are discussed.
Abstract: Plants as immovable organisms sense the stressors in their environment and respond to them by means of dedicated stress response pathways. In response to stress, jasmonates (jasmonic acid, its precursors and derivatives), a class of polyunsaturated fatty acid-derived phytohormones, play crucial roles in several biotic and abiotic stresses. As the major immunity hormone, jasmonates participate in numerous signal transduction pathways, including those of gene networks, regulatory proteins, signaling intermediates, and proteins, enzymes, and molecules that act to protect cells from the toxic effects of abiotic stresses. As cellular hubs for integrating informational cues from the environment, jasmonates play significant roles in alleviating salt stress, drought stress, heavy metal toxicity, micronutrient toxicity, freezing stress, ozone stress, CO2 stress, and light stress. Besides these, jasmonates are involved in several developmental and physiological processes throughout the plant life. In this review, we discuss the biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses.

183 citations


Cites background from "Stress and defense responses in pla..."

  • ...The primary abiotic stresses that influence plant growth include light, temperature, salt, carbon dioxide, water, ozone, and soil nutrient content and availability [1], where the fluctuation of any of these can hamper the normal physiological processes....

    [...]

  • ...The accumulation of JA in response to wounding is a common physiological feedback among all vascular plant species [1]....

    [...]

Journal ArticleDOI
13 May 2021-Agronomy
TL;DR: The shikimate pathway and the aromatic amino acids produced in this pathway are the precursors of a range of secondary metabolites including terpenoids, alkaloids, and sulfur- and nitrogen-containing compounds and how the biosynthesis of important metabolites is altered by several genes related to secondary metabolite biosynthesis pathways are detailed.
Abstract: Plant secondary metabolites (SMs) play important roles in plant survival and in creating ecological connections between other species. In addition to providing a variety of valuable natural products, secondary metabolites help protect plants against pathogenic attacks and environmental stresses. Given their sessile nature, plants must protect themselves from such situations through accumulation of these bioactive compounds. Indeed, secondary metabolites act as herbivore deterrents, barriers against pathogen invasion, and mitigators of oxidative stress. The accumulation of SMs are highly dependent on environmental factors such as light, temperature, soil water, soil fertility, and salinity. For most plants, a change in an individual environmental factor can alter the content of secondary metabolites even if other factors remain constant. In this review, we focus on how individual environmental factors affect the accumulation of secondary metabolites in plants during both biotic and abiotic stress conditions. Furthermore, we discuss the application of abiotic and biotic elicitors in culture systems as well as their stimulating effects on the accumulation of secondary metabolites. Specifically, we discuss the shikimate pathway and the aromatic amino acids produced in this pathway, which are the precursors of a range of secondary metabolites including terpenoids, alkaloids, and sulfur- and nitrogen-containing compounds. We also detail how the biosynthesis of important metabolites is altered by several genes related to secondary metabolite biosynthesis pathways. Genes responsible for secondary metabolite biosynthesis in various plant species during stress conditions are regulated by transcriptional factors such as WRKY, MYB, AP2/ERF, bZIP, bHLH, and NAC, which are also discussed here.

178 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the patterns and potential underlying mechanisms of interactions between secondary metabolites and plant microbiomes and describe the recent developments in analytical approaches and methods in this field.
Abstract: Plant secondary metabolites (PSMs) play many roles including defense against pathogens, pests, and herbivores; response to environmental stresses, and mediating organismal interactions. Similarly, plant microbiomes participate in many of the above-mentioned processes directly or indirectly by regulating plant metabolism. Studies have shown that plants can influence their microbiome by secreting various metabolites and, in turn, the microbiome may also impact the metabolome of the host plant. However, not much is known about the communications between the interacting partners to impact their phenotypic changes. In this article, we review the patterns and potential underlying mechanisms of interactions between PSMs and plant microbiomes. We describe the recent developments in analytical approaches and methods in this field. The applications of these new methods and approaches have increased our understanding of the relationships between PSMs and plant microbiomes. Though the current studies have primarily focused on model organisms, the methods and results obtained so far should help future studies of agriculturally important plants and facilitate the development of methods to manipulate PSMs-microbiome interactions with predictive outcomes for sustainable crop productions.

165 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative bioprospecting for a group of wild orchids using EBDCS (the Economic Botany Data Collection Standards) organ targeted and biological response methods was carried out.
Abstract: Necklace orchids (Coelogyninae, Epidendroideae) have been used in traditional medicine practices for centuries. Previous studies on a subset of unrelated orchid species utilized in these traditional practices revealed they possessed antimicrobial, anti-inflammatory, and anti-oxidant activity, providing experimental proof for their medicinal properties. To date however none of these species have been investigated ethno-botanically in a phylogenetic context. This study carried out comparative bioprospecting for a group of wild orchids using EBDCS (the Economic Botany Data Collection Standards) organ targeted and biological response methods. The traditional medicinal use of necklace orchids was recorded from books and journals published between 1984 and 2016. Two orchids, Coelogyne cristata and Coelogyne fimbriata, were selected, cultivated both indoors and outdoors, and the antimicrobial properties on extracts from their leaves and pseudobulbs tested against a selection of human pathogens. A molecular phylogeny of Coelogyninae based on nuclear ribosomal ITS and plastid matK DNA sequences obtained from 148 species was reconstructed with Maximum Likelihood (ML) using RAxML, Maximum Parsimony (MP) using PAUP and Bayesian Inference using MrBayes. Bioprospecting comparison of EBDCS and biological response was carried out using customized R scripts. Ethanolic extracts obtained from leaves of C. fimbriata inhibited growth of Bacillus cereus, Staphylococcus aureus, and Yersinia enterocolitica, confirming the antimicrobial properties of these extracts. Leaf extracts were found to have slightly stronger antimicrobial properties for plants cultivated outdoors than indoors. These differences were not found to be statistically significant though. Three hot nodes with high potency for antimicrobial activities were detected with the EBDCS organ targeted classification method, and eight hot nodes were detected with the biological response classification method. The biological response classification method is thus a more effective tool in finding hot nodes amongst clades of species with high medicinal potential.

142 citations

References
More filters
Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production and provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms.
Abstract: Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.

10,539 citations


"Stress and defense responses in pla..." refers background in this paper

  • ...Plants immune system have evolved numerous stress detection mechanisms that includes transmembrane recognition (in response to evolving pathogen or microbial association molecular pattern), polymorphic NB-LRR protein production by most R-genes (to large extent inside cell) and production of SMs to cope with the stress situations, and thus, become remodeled to endure the condition [59, 60]....

    [...]

Journal ArticleDOI
TL;DR: The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level and the role of the HKT gene family in Na(+) exclusion from leaves is increasing.
Abstract: The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na + or Cl − exclusion, and the tolerance of tissue to accumulated Na + or Cl − . Our understanding of the role of the HKT gene family in Na + exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na + accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.

9,966 citations

Journal ArticleDOI
TL;DR: It is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress, to understand the processes that give rise toolerance of salt, as distinct from tolerance of osmotic stress.
Abstract: Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salttolerant plants differ from salt-sensitive ones in having a low rate of Na + and Cl ‐ transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress.

5,868 citations

Journal ArticleDOI
TL;DR: In Arabidopsis, a network of at least 152 genes is involved in managing the level of ROS, and this network is highly dynamic and redundant, and encodes ROS-scavenging and ROS-producing proteins.

4,902 citations

Journal ArticleDOI
TL;DR: Limiting discussion to stress-induced phenylpropanoids eliminates few of the structural classes, because many compounds that are constitutive in one plant species or tissue can be induced by various stresses in another species or in another tissue of the same plant.
Abstract: Phenylpropanoid compounds encompass a wide range of structural classes and biological functions. Limiting discussion to stress-induced phenylpropanoids eliminates few of the structural classes, because many compounds thst are constitutive in one plant species or tissue can be induced by various stresses in another species or in another tissue of the same plant (Beggs et al., 1987; Christie et al., 1994).

4,046 citations

Trending Questions (1)
What factors influence the development of secondary growth in plants?

Plant secondary metabolite production is influenced by species, genotype, physiology, developmental stage, and environmental factors, indicating adaptive responses to stress and defense stimuli during growth.