scispace - formally typeset
Search or ask a question
Journal Article

Stress and eating behaviors.

01 Sep 2013-Minerva Endocrinologica (NIH Public Access)-Vol. 38, Iss: 3, pp 255-267
TL;DR: Chronic stress may synergistically potentiate reward sensitivity, food preference, and the wanting and seeking of hyperpalatable foods, as well as induce metabolic changes that promote weight and body fat mass.
Abstract: Obesity is a heterogeneous construct that, despite multiple and diverse attempts, has been difficult to treat. One conceptualization gaining media and research attention in recent years is that foods, particularly hyperpalatable (e.g., high-fat, high sugar) ones, may possess addictive qualities. Stress is an important factor in the development of addiction and in addiction relapse, and may contribute to an increased risk for obesity and other metabolic diseases. Uncontrollable stress changes eating patterns and the salience and consumption of hyperpalatable foods; over time, this could lead to changes in allostatic load and trigger neurobiological adaptations that promote increasingly compulsive behavior. This association may be mediated by alterations in the hypothalamic-pituitary-adrenal (HPA) axis, glucose metabolism, insulin sensitivity, and other appetite-related hormones and hypothalamic neuropeptides. At a neurocircuitry level, chronic stress may affect the mesolimbic dopaminergic system and other brain regions involved in stress/motivation circuits. Together, these may synergistically potentiate reward sensitivity, food preference, and the wanting and seeking of hyperpalatable foods, as well as induce metabolic changes that promote weight and body fat mass. Individual differences in susceptibility to obesity and types of stressors may further moderate this process. Understanding the associations and interactions between stress, neurobiological adaptations, and obesity is important in the development of effective prevention and treatment strategies for obesity and related metabolic diseases.
Citations
More filters
Journal ArticleDOI
TL;DR: It is highlighted that lockdown imposed to contain an infectious agent may affect eating behaviors and dietary habits, and advocates for organized nutritional support during future epidemic-related quarantines, particularly for the most vulnerable groups, including overweight and obese subjects.
Abstract: The outbreak of coronavirus disease (COVID-19) in late December 2019 in China, which later developed into a pandemic, has forced different countries to implement strict sanitary regimes and social distancing measures. Globally, at least four billion people were under lockdown, working remotely, homeschooling children, and facing challenges coping with quarantine and the stressful events. The present cross-sectional online survey of adult Poles (n = 1097), conducted during a nationwide quarantine, aimed to assess whether nutritional and consumer habits have been affected under these conditions. Over 43.0% and nearly 52% reported eating and snacking more, respectively, and these tendencies were more frequent in overweight and obese individuals. Almost 30% and over 18% experienced weight gain (mean ± SD 3.0 ± 1.6 kg) and loss (−2.9 ± 1.5 kg), respectively. Overweight, obese, and older subjects (aged 36–45 and >45) tended to gain weight more frequently, whereas those with underweight tended to lose it further. Increased BMI was associated with less frequent consumption of vegetables, fruit, and legumes during quarantine, and higher adherence to meat, dairy, and fast-foods. An increase in alcohol consumption was seen in 14.6%, with a higher tendency to drink more found among alcohol addicts. Over 45% of smokers experienced a rise in smoking frequency during the quarantine. The study highlights that lockdown imposed to contain an infectious agent may affect eating behaviors and dietary habits, and advocates for organized nutritional support during future epidemic-related quarantines, particularly for the most vulnerable groups, including overweight and obese subjects.

730 citations

Journal ArticleDOI
TL;DR: Dopamine contributes to addiction and obesity through its differentiated roles in reinforcement, motivation and self-regulation, referred to here as the 'dopamine motive system', which, if compromised, can result in increased, habitual and inflexible responding.
Abstract: Behaviours such as eating, copulating, defending oneself or taking addictive drugs begin with a motivation to initiate the behaviour. Both this motivational drive and the behaviours that follow are influenced by past and present experience with the reinforcing stimuli (such as drugs or energy-rich foods) that increase the likelihood and/or strength of the behavioural response (such as drug taking or overeating). At a cellular and circuit level, motivational drive is dependent on the concentration of extrasynaptic dopamine present in specific brain areas such as the striatum. Cues that predict a reinforcing stimulus also modulate extrasynaptic dopamine concentrations, energizing motivation. Repeated administration of the reinforcer (drugs, energy-rich foods) generates conditioned associations between the reinforcer and the predicting cues, which is accompanied by downregulated dopaminergic response to other incentives and downregulated capacity for top-down self-regulation, facilitating the emergence of impulsive and compulsive responses to food or drug cues. Thus, dopamine contributes to addiction and obesity through its differentiated roles in reinforcement, motivation and self-regulation, referred to here as the 'dopamine motive system', which, if compromised, can result in increased, habitual and inflexible responding. Thus, interventions to rebalance the dopamine motive system might have therapeutic potential for obesity and addiction.

609 citations

Journal ArticleDOI
TL;DR: The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.
Abstract: Obesity is among the most common and costly chronic disorders worldwide. Estimates suggest that in the United States obesity affects one-third of adults, accounts for up to one-third of total mortality, is concentrated among lower income groups, and increasingly affects children as well as adults. A lack of effective options for long-term weight reduction magnifies the enormity of this problem; individuals who successfully complete behavioral and dietary weight-loss programs eventually regain most of the lost weight. We included evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding mechanisms underlying excess body-fat accumulation, the biological defense of excess fat mass, and the tendency for lost weight to be regained. A major area of emphasis is the science of energy homeostasis, the biological process that maintains weight stability by actively matching energy intake to energy expenditure over time. Growing evidence suggests that obesity is a disorder of the energy homeostasis system, rather than simply arising from the passive accumulation of excess weight. We need to elucidate the mechanisms underlying this "upward setting" or "resetting" of the defended level of body-fat mass, whether inherited or acquired. The ongoing study of how genetic, developmental, and environmental forces affect the energy homeostasis system will help us better understand these mechanisms and are therefore a major focus of this statement. The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.

416 citations

Journal ArticleDOI
Minati Singh1
TL;DR: An overview of complex nature of food intake where various biological factors link mood, food intake, and brain signaling that engages both peripheral and central nervous system signaling pathways in a bi-directional manner in obesity is provided.
Abstract: Food is a potent natural reward and food intake is a complex process. Reward and gratification associated with food consumption leads to dopamine (DA) production, which in turn activates reward and pleasure centers in the brain. An individual will repeatedly eat a particular food to experience this positive feeling of gratification. This type of repetitive behavior of food intake leads to the activation of brain reward pathways that eventually overrides other signals of satiety and hunger. Thus, a gratification habit through a favorable food leads to overeating and morbid obesity. Overeating and obesity stems from many biological factors engaging both central and peripheral systems in a bi-directional manner involving mood and emotions. Emotional eating and altered mood can also lead to altered food choice and intake leading to overeating and obesity. Research findings from human and animal studies support a two-way link between three concepts, mood, food, and obesity. The focus of this article is to provide an overview of complex nature of food intake where various biological factors link mood, food intake, and brain signaling that engages both peripheral and central nervous system signaling pathways in a bi-directional manner in obesity.

296 citations

Journal ArticleDOI
TL;DR: The health impacts of isolation measures during the early phase of the COVID-19 pandemic in Australia (March/April) on diet and physical activity patterns in third-year biomedical students are examined, with the potential to affect long-term diet and activity behaviours.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic resulted in physical isolation measures in many parts of the world In Australia, nationwide restrictions included staying at home, unless seeking medical care, providing care, purchasing food, undertaking exercise, or attending work in an essential service All undergraduate university classes transitioned to online, mostly home-based learning We, therefore, examined the effect of isolation measures during the early phase of the COVID-19 pandemic in Australia (March/April) on diet (24-h recall) and physical activity (Active Australia Survey) patterns in third-year biomedical students Findings were compared with students enrolled in the same course in the previous two years In females, but not males, energy intake was ~20% greater during the pandemic, and snacking frequency and energy density of consumed snacks also increased compared with 2018 and 2019 Physical activity was impacted for both sexes during the pandemic with ~30% fewer students achieving “sufficient” levels of activity, defined by at least 150 min over at least five sessions, compared with the previous two years In a follow-up study six to eight weeks later (14–18% response rate), during gradual easing of nationwide restrictions albeit continued gym closures and online learning, higher energy intake in females and reduced physical activity levels in both sexes persisted These data demonstrate the health impacts of isolation measures, with the potential to affect long-term diet and activity behaviours

215 citations

References
More filters
Journal ArticleDOI
01 Jan 2003-JAMA
TL;DR: Overweight and obesity were significantly associated with diabetes, high blood pressure, high cholesterol, asthma, arthritis, and poor health status, and increases in obesity and diabetes continue in both sexes, all ages, all races, all educational levels, and all smoking levels.
Abstract: Context Obesity and diabetes are increasing in the United States. Objective To estimate the prevalence of obesity and diabetes among US adults in 2001. Design, Setting, and Participants Random-digit telephone survey of 195 005 adults aged 18 years or older residing in all states participating in the Behavioral Risk Factor Surveillance System in 2001. Main Outcome Measures Body mass index, based on self-reported weight and height and self-reported diabetes. Results In 2001 the prevalence of obesity (BMI ≥30) was 20.9% vs 19.8% in 2000, an increase of 5.6%. The prevalence of diabetes increased to 7.9% vs 7.3% in 2000, an increase of 8.2%. The prevalence of BMI of 40 or higher in 2001 was 2.3%. Overweight and obesity were significantly associated with diabetes, high blood pressure, high cholesterol, asthma, arthritis, and poor health status. Compared with adults with normal weight, adults with a BMI of 40 or higher had an odds ratio (OR) of 7.37 (95% confidence interval [CI], 6.39-8.50) for diagnosed diabetes, 6.38 (95% CI, 5.67-7.17) for high blood pressure, 1.88 (95% CI,1.67-2.13) for high cholesterol levels, 2.72 (95% CI, 2.38-3.12) for asthma, 4.41 (95% CI, 3.91-4.97) for arthritis, and 4.19 (95% CI, 3.68-4.76) for fair or poor health. Conclusions Increases in obesity and diabetes among US adults continue in both sexes, all ages, all races, all educational levels, and all smoking levels. Obesity is strongly associated with several major health risk factors.

5,790 citations

Book
01 Jan 1956
TL;DR: In this paper, the discovery of stress, the dissection of stress the disease of adaptation sketch for a unified theory implications and applications is described, and the authors propose a unified framework for adaptation.
Abstract: The discovery of stress the dissection of stress the disease of adaptation sketch for a unified theory implications and applications.

5,551 citations

Journal ArticleDOI
27 Oct 1999-JAMA
TL;DR: A graded increase in the prevalence ratio (PR) was observed with increasing severity of overweight and obesity for all of the health outcomes except for coronary heart disease in men and high blood cholesterol level in both men and women.
Abstract: ContextOverweight and obesity are increasing dramatically in the United States and most likely contribute substantially to the burden of chronic health conditions.ObjectiveTo describe the relationship between weight status and prevalence of health conditions by severity of overweight and obesity in the US population.Design and SettingNationally representative cross-sectional survey using data from the Third National Health and Nutrition Examination Survey (NHANES III), which was conducted in 2 phases from 1988 to 1994.ParticipantsA total of 16,884 adults, 25 years and older, classified as overweight and obese (body mass index [BMI] ≥25 kg/m2) based on National Institutes of Health recommended guidelines.Main Outcome MeasuresPrevalence of type 2 diabetes mellitus, gallbladder disease, coronary heart disease, high blood cholesterol level, high blood pressure, or osteoarthritis.ResultsSixty-three percent of men and 55% of women had a body mass index of 25 kg/m2 or greater. A graded increase in the prevalence ratio (PR) was observed with increasing severity of overweight and obesity for all of the health outcomes except for coronary heart disease in men and high blood cholesterol level in both men and women. With normal-weight individuals as the reference, for individuals with BMIs of at least 40 kg/m2 and who were younger than 55 years, PRs were highest for type 2 diabetes for men (PR, 18.1; 95% confidence interval [CI], 6.7-46.8) and women (PR, 12.9; 95% CI, 5.7-28.1) and gallbladder disease for men (PR, 21.1; 95% CI, 4.1-84.2) and women (PR, 5.2; 95% CI, 2.9-8.9). Prevalence ratios generally were greater in younger than in older adults. The prevalence of having 2 or more health conditions increased with weight status category across all racial and ethnic subgroups.ConclusionsBased on these results, more than half of all US adults are considered overweight or obese. The prevalence of obesity-related comorbidities emphasizes the need for concerted efforts to prevent and treat obesity rather than just its associated comorbidities.

4,987 citations

Journal ArticleDOI
TL;DR: The effect of various drugs on the extracellular concentration of dopamine in two terminal dopaminergic areas, the nucleus accumbens septi (a limbic area) and the dorsal caudate nucleus (a subcortical motor area), was studied in freely moving rats by using brain dialysis as mentioned in this paper.
Abstract: The effect of various drugs on the extracellular concentration of dopamine in two terminal dopaminergic areas, the nucleus accumbens septi (a limbic area) and the dorsal caudate nucleus (a subcortical motor area), was studied in freely moving rats by using brain dialysis. Drugs abused by humans (e.g., opiates, ethanol, nicotine, amphetamine, and cocaine) increased extracellular dopamine concentrations in both areas, but especially in the accumbens, and elicited hypermotility at low doses. On the other hand, drugs with aversive properties (e.g., agonists of kappa opioid receptors, U-50,488, tifluadom, and bremazocine) reduced dopamine release in the accumbens and in the caudate and elicited hypomotility. Haloperidol, a neuroleptic drug, increased extracellular dopamine concentrations, but this effect was not preferential for the accumbens and was associated with hypomotility and sedation. Drugs not abused by humans [e.g., imipramine (an antidepressant), atropine (an antimuscarinic drug), and diphenhydramine (an antihistamine)] failed to modify synaptic dopamine concentrations. These results provide biochemical evidence for the hypothesis that stimulation of dopamine transmission in the limbic system might be a fundamental property of drugs that are abused.

4,610 citations

Journal ArticleDOI
TL;DR: The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.

4,160 citations