scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Stretchable nanoparticle conductors with self-organized conductive pathways

01 Aug 2013-Nature (Nature Research)-Vol. 500, Iss: 7460, pp 59-63
TL;DR: Stretchable conductors of polyurethane containing spherical nanoparticles deposited by either layer-by-layer assembly or vacuum-assisted flocculation are demonstrated, demonstrating the electronic tunability of mechanical properties, which arise from the dynamic self-organization of the nanoparticles under stress.
Abstract: Research in stretchable conductors is fuelled by diverse technological needs. Flexible electronics, neuroprosthetic and cardiostimulating implants, soft robotics and other curvilinear systems require materials with high conductivity over a tensile strain of 100 per cent (refs 1-3). Furthermore, implantable devices or stretchable displays need materials with conductivities a thousand times higher while retaining a strain of 100 per cent. However, the molecular mechanisms that operate during material deformation and stiffening make stretchability and conductivity fundamentally difficult properties to combine. The macroscale stretching of solids elongates chemical bonds, leading to the reduced overlap and delocalization of electronic orbitals. This conductivity-stretchability dilemma can be exemplified by liquid metals, in which conduction pathways are retained on large deformation but weak interatomic bonds lead to compromised strength. The best-known stretchable conductors use polymer matrices containing percolated networks of high-aspect-ratio nanometre-scale tubes or nanowires to address this dilemma to some extent. Further improvements have been achieved by using fillers (the conductive component) with increased aspect ratio, of all-metallic composition, or with specific alignment (the way the fillers are arranged in the matrix). However, the synthesis and separation of high-aspect-ratio fillers is challenging, stiffness increases with the volume content of metallic filler, and anisotropy increases with alignment. Pre-strained substrates, buckled microwires and three-dimensional microfluidic polymer networks have also been explored. Here we demonstrate stretchable conductors of polyurethane containing spherical nanoparticles deposited by either layer-by-layer assembly or vacuum-assisted flocculation. High conductivity and stretchability were observed in both composites despite the minimal aspect ratio of the nanoparticles. These materials also demonstrate the electronic tunability of mechanical properties, which arise from the dynamic self-organization of the nanoparticles under stress. A modified percolation theory incorporating the self-assembly behaviour of nanoparticles gave an excellent match with the experimental data.
Citations
More filters
Journal ArticleDOI
15 Dec 2016-Nature
TL;DR: Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics, which are soft, stretchable and mechanically conformable.
Abstract: Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.

1,134 citations

Journal ArticleDOI
TL;DR: The use of liquid metals based on gallium for soft and stretchable electronics is discussed, and these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials.
Abstract: The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered.

1,062 citations

Journal ArticleDOI
Beatriz Pelaz1, Christoph Alexiou2, Ramon A. Alvarez-Puebla3, Frauke Alves4, Frauke Alves5, Anne M. Andrews6, Sumaira Ashraf1, Lajos P. Balogh, Laura Ballerini7, Alessandra Bestetti8, Cornelia Brendel1, Susanna Bosi9, Mónica Carril10, Warren C. W. Chan11, Chunying Chen, Xiaodong Chen12, Xiaoyuan Chen13, Zhen Cheng14, Daxiang Cui15, Jianzhong Du16, Christian Dullin5, Alberto Escudero1, Alberto Escudero17, Neus Feliu18, Mingyuan Gao, Michael D. George, Yury Gogotsi19, Arnold Grünweller1, Zhongwei Gu20, Naomi J. Halas21, Norbert Hampp1, Roland K. Hartmann1, Mark C. Hersam22, Patrick Hunziker23, Ji Jian24, Xingyu Jiang, Philipp Jungebluth25, Pranav Kadhiresan11, Kazunori Kataoka26, Ali Khademhosseini27, Jindřich Kopeček28, Nicholas A. Kotov29, Harald F. Krug30, Dong Soo Lee31, Claus-Michael Lehr32, Kam W. Leong33, Xing-Jie Liang34, Mei Ling Lim18, Luis M. Liz-Marzán10, Xiaowei Ma34, Paolo Macchiarini35, Huan Meng6, Helmuth Möhwald4, Paul Mulvaney8, Andre E. Nel6, Shuming Nie36, Peter Nordlander21, Teruo Okano, Jose Oliveira, Tai Hyun Park31, Reginald M. Penner37, Maurizio Prato9, Maurizio Prato10, Víctor F. Puntes38, Vincent M. Rotello39, Amila Samarakoon11, Raymond E. Schaak40, Youqing Shen24, Sebastian Sjöqvist18, Andre G. Skirtach41, Andre G. Skirtach4, Mahmoud Soliman1, Molly M. Stevens42, Hsing-Wen Sung43, Ben Zhong Tang44, Rainer Tietze2, Buddhisha Udugama11, J. Scott VanEpps29, Tanja Weil4, Tanja Weil45, Paul S. Weiss6, Itamar Willner46, Yuzhou Wu4, Yuzhou Wu47, Lily Yang, Zhao Yue1, Qian Zhang1, Qiang Zhang48, Xian-En Zhang, Yuliang Zhao, Xin Zhou, Wolfgang J. Parak1 
14 Mar 2017-ACS Nano
TL;DR: An overview of recent developments in nanomedicine is provided and the current challenges and upcoming opportunities for the field are highlighted and translation to the clinic is highlighted.
Abstract: The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.

926 citations

Journal ArticleDOI
TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Abstract: Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.

881 citations

PatentDOI
TL;DR: A highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS).
Abstract: A polymer composition includes a conductive polymer and at least one stretchability and electrical conductivity (STEC) enhancer, wherein a content of the STEC enhancer in the composition is at least about 1 wt.% of the composition.

858 citations


Cites background from "Stretchable nanoparticle conductors..."

  • ...Metal nanoparticles or flakes have also been shown to be good filler materials under specific conditions because of their ability to self-organize upon stretching (7, 18)....

    [...]

References
More filters
Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations

Journal ArticleDOI
26 Mar 2010-Science
TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Abstract: Recent advances in mechanics and materials provide routes to integrated circuits that can offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent, and deformed into arbitrary shapes. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we review these strategies and describe applications of them in systems ranging from electronic eyeball cameras to deformable light-emitting displays. We conclude with some perspectives on routes to commercialization, new device opportunities, and remaining challenges for research.

4,127 citations


"Stretchable nanoparticle conductors..." refers background or methods in this paper

  • ...The green line shows the calculated conductivity of the LBL composite based on the power-law relation in equation (1) and three-dimensional percolation theory....

    [...]

  • ...Thus, V c in equation (1) was modified by introducing a self-assembly coefficient a with square-root dependency of e as follows:...

    [...]

  • ...The prepared composites presented an interesting case for percolation theory because of (1) the unusually high conductance of particles with minimal aspect ratio and (2) the extensive structural characterization (Figs 1–3)....

    [...]

  • ...Unambiguous application of equation (1) to VAF composites is difficult owing to aggregation of nanoparticles (Fig....

    [...]

  • ...The application of LBL allowed us to (1) reach high nanoparticle loadings, (2) maintain the uniformity of nanoparticle distribution throughout the material, and (3) make adequate comparisons between nanoparticle composites with different nanoscale fillers(22)....

    [...]

Journal ArticleDOI
TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Abstract: Transparent films of carbon nanotubes can accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm−1 in the stretched state.

2,847 citations

Journal ArticleDOI
TL;DR: The manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber is described, which is constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductor, organic transistors and organic light-emitting diodes.
Abstract: Stretchability will significantly expand the applications scope of electronics, particularly for large-area electronic displays, sensors and actuators. Unlike for conventional devices, stretchable electronics can cover arbitrary surfaces and movable parts. However, a large hurdle is the manufacture of large-area highly stretchable electrical wirings with high conductivity. Here, we describe the manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber. Using an ionic liquid and jet-milling, we produce long and fine SWNT bundles that can form well-developed conducting networks in the rubber. Conductivity of more than 100 S cm(-1) and stretchability of more than 100% are obtained. Making full use of this extraordinary conductivity, we constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductors, organic transistors and organic light-emitting diodes. The display could be stretched by 30-50% and spread over a hemisphere without any mechanical or electrical damage.

1,616 citations