scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Strike-Slip faults

01 Nov 1988-Geological Society of America Bulletin (Geological Society of America)-Vol. 100, Iss: 11, pp 1666-1703
TL;DR: The importance of strike-slip faulting was recognized near the turn of the century, mainly from investigations of surficial offsets associated with major earthquakes in New Zealand, Japan, and California.
Abstract: The importance of strike-slip faulting was recognized near the turn of the century, chiefly from investigations of surficial offsets associated with major earthquakes in New Zealand, Japan, and California. Extrapolation from observed horizontal displacements during single earthquakes to more abstract concepts of long-term, slow accumulation of hundreds of kilometers of horizontal translation over geologic time, however, came almost simultaneously from several parts of the world, but only after much regional geologic mapping and synthesis. Strike-slip faults are classified either as transform faults which cut the lithosphere as plate boundaries, or as transcurrent faults which are confined to the crust. Each class of faults may be subdivided further according to their plate or intraplate tectonic function. A mechanical understanding of strike-slip faults has grown out of laboratory model studies which give a theoretical basis to relate faulting to concepts of pure shear or simple shear. Conjugate sets of strike-slip faults form in pure shear, typically across the strike of a convergent orogenic belt. Fault lengths are generally less than 100 km, and displacements along them are measurable in a few to tens of kilometers. Major strike-slip faults form in regional belts of simple shear, typically parallel to orogenic belts; indeed, recognition of the role strike-slip faults play in ancient orogenic belts is becoming increasingly commonplace as regional mapping becomes more detailed and complete. The lengths and displacements of the great strike-slip faults range in the hundreds of kilometers. The position and orientation of associated folds, local domains of extension and shortening, and related fractures and faults depend on the bending or stepping geometry of the strike-slip fault or fault zone, and thus the degree of convergent or divergent strike-slip. Elongate basins, ranging from sag ponds to rhombochasms, form as result of extension in domains of divergent strike slip such as releasing bends; pull-apart basins evolve between overstepping strike-slip faults. The arrangement of strike-slip faults which bound basins is tulip-shaped in profiles normal to strike. Elongate uplifts, ranging from pressure ridges to long, low hills or small mountain ranges, form as a result of crustal shortening in zones of convergent strike slip; they are bounded by an arrangement of strike-slip faults having the profile of a palm tree. Paleoseismic investigations imply that earthquakes occur more frequently on strike-slip faults than on intraplate normal and reverse faults. Active strike-slip faults also differ from other types of faults in that they evince fault creep, which is largely a surficial phenomenon driven by elastic loading of the crust at seismogenic depths. Creep may be steady state or episodic, pre-seismic, co-seismic, or post-seismic, depending on the constitutive properties of the fault zone and the nature of the static strain field, among a number of other factors which are incompletely understood. Recent studies have identified relations between strike-slip faults and crustal delamination at or near the seismogenic zone, giving a mechanism for regional rotation and translation of crustal slabs and flakes, but how general and widespread are these phenomena, and how the mechanisms operate that drive these detachment tectonics are questions that require additional observations, data, and modeling. Several fundamental problems remain poorly understood, including the nature of formation of en echelon folds and their relation to strike-slip faulting; the effect of mechanical stratigraphy on strike-slip-fault structural styles; the thermal and stress states along transform plate boundaries; and the discrepancy between recent geological and historical fault-slip rates relative to more rapid rates of slip determined from analyses of sea-floor magnetic anomalies. Many of the concepts and problems concerning strike-slip faults are derived from nearly a century of study of the San Andreas fault and have added much information, but solutions to several remaining and new fundamental problems will come when more attention is focused on other, less well studied strike-slip faults.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma as discussed by the authors.
Abstract: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma. Significant crustal shortening, which leads to eventual construction of the Cenozoic Tibetan plateau, began more or less synchronously in the Eocene (50–40 Ma) in the Tethyan Himalaya in the south, and in the Kunlun Shan and the Qilian Shan some 1000–1400 km in the north. The Paleozoic and Mesozoic tectonic histories in the Himalayan-Tibetan orogen exerted a strong control over the Cenozoic strain history and strain distribution. The presence of widespread Triassic flysch complex in the Songpan-Ganzi-Hoh Xil and the Qiangtang terranes can be spatially correlated with Cenozoic volcanism and thrusting in central Tibet. The marked difference in seismic properties of the crust and the upper mantle between southern and central Tibet is a manifestation of both Mesozoic and Cenozoic tectonics. The form...

4,494 citations


Cites background from "Strike-Slip faults"

  • ...Estimating the magnitude of fault slip along a major strike-slip fault requires determination of piercing points (Crowell 1962; Sylvester 1988) A nn u....

    [...]

Journal ArticleDOI
TL;DR: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used as discussed by the authors.
Abstract: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used Tectonic implications of the patterns that emerged from the results are discussed It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; eg, between the Indian and Australian plates and between the North American and South American plates Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates

3,409 citations

01 Jan 1988
TL;DR: In this paper, a new global model (NUVEL-1) was proposed to describe the geologically current motion between 12 assumed-rigid plates by inverting plate motion data.
Abstract: SUMMARY We determine best-fitting Euler vectors, closure-fitting Euler vectors, and a new global model (NUVEL-1) describing the geologically current motion between 12 assumed-rigid plates by inverting plate motion data we have compiled, critically analysed, and tested for self-consistency. We treat Arabia, India and Australia, and North America and South America as distinct plates, but combine Nubia and Somalia into a single African plate because motion between them could not be reliably resolved. The 1122 data from 22 plate boundaries inverted to obtain NUVEL-1 consist of 277 spreading rates, 121 transform fault azimuths, and 724 earthquake slip vectors. We determined all rates over a uniform time interval of 3.0m.y., corresponding to the centre of the anomaly 2A sequence, by comparing synthetic magnetic anomalies with observed profiles. The model fits the data well. Unlike prior global plate motion models, which systematically misfit some spreading rates in the Indian Ocean by 8–12mm yr−1, the systematic misfits by NUVEL-1 nowhere exceed ∼3 mm yr−1. The model differs significantly from prior global plate motion models. For the 30 pairs of plates sharing a common boundary, 29 of 30 P071, and 25 of 30 RM2 Euler vectors lie outside the 99 per cent confidence limits of NUVEL-1. Differences are large in the Indian Ocean where NUVEL-1 plate motion data and plate geometry differ from those used in prior studies and in the Pacific Ocean where NUVEL-1 rates are systematically 5–20 mm yr−1 slower than those of prior models. The strikes of transform faults mapped with GLORIA and Seabeam along the Mid-Atlantic Ridge greatly improve the accuracy of estimates of the direction of plate motion. These data give Euler vectors differing significantly from those of prior studies, show that motion about the Azores triple junction is consistent with plate circuit closure, and better resolve motion between North America and South America. Motion of the Caribbean plate relative to North or South America is about 7 mm yr−1 slower than in prior global models. Trench slip vectors tend to be systematically misfit wherever convergence is oblique, and best-fitting poles determined only from trench slip vectors differ significantly from their corresponding closure-fitting Euler vectors. The direction of slip in trench earthquakes tends to be between the direction of plate motion and the normal to the trench strike. Part of this bias may be due to the neglect of lateral heterogeneities of seismic velocities caused by cold subducting slabs, but the larger part is likely caused by independent motion of fore-arc crust and lithosphere relative to the overriding plate.

3,328 citations

Journal ArticleDOI
TL;DR: In this article, the authors use three-dimensional seismic imagery and seismic anomaly mapping, combined with horizontal drilling oblique to linear trends defined by structural sags, helps to reduce risk.
Abstract: Structurally controlled hydrothermal dolomite (HTD) reservoir facies and associated productive leached limestones are major hydrocarbon producers in North America and are receiving increased exploration attention globally. They include multiple trends in the Ordovician (locally, Silurian and Devonian) of the Michigan, Appalachian, and other basins of eastern Canada and the United States, and in the Devonian and Mississippian of the Western Canada sedimentary basin. They also occur in Jurassic hosts along rifted Atlantic margins, in the Jurassic–Cretaceous of the Arabian Gulf region and elsewhere. Hydrothermal dolomitization is defined as dolomitization occurring under burial conditions, commonly at shallow depths, by fluids (typically very saline) with temperature and pressure (T and P) higher than the ambient T and P of the host formation. The latter commonly is limestone. Proof of a hydrothermal origin for HTD reservoir facies requires integration of burial-thermal history plots, fluid-inclusion temperature data, and constraints on timing of emplacement. Hydrothermal dolomite reservoir facies are part of a spectrum of hydrothermal mineral deposits that include sedimentary-exhalative lead-zinc ore bodies and HTD-hosted Mississippi Valley–type sulfide deposits. All three hydrothermal deposits show a strong structural control by extensional and/or strike-slip (wrench) faults, with fluid flow typically focused at transtensional and dilational structural sites and in the hanging wall. Transtensional sags above negative flower structures on wrench faults are favored drilling sites for HTD reservoir facies. Saddle dolomite in both replacive and void-filling modes is characteristic of HTD facies. For many reservoirs, matrix-replacive dolomite and saddle dolomite appear to have formed near-contemporaneously and from the same fluid and temperature conditions. The original host facies exerts a major influence on the lateral extent of dolomitization, resultant textures, pore type, and pore volume. Breccias, zebra fabrics, shear microfractures, and other rock characteristics record short-term shear stress and pore-fluid-pressure transients, particularly proximal to active faults. High-temperature hydrothermal pulses may alter kerogen in host limestones, a process designated “forced maturation.” Basement highs, underlying sandstone (and/or carbonate?) aquifers (probably overpressured), and overlying and internal shale seals and aquitards also may constrain or influence HTD emplacement. Although many questions and uncertainties remain, particularly in terms of Mg and brine source and mass balance, recognition and active exploration of the HTD play continues to expand. Increasing use of three-dimensional seismic imagery and seismic anomaly mapping, combined with horizontal drilling oblique to linear trends defined by structural sags, helps to reduce risk.

641 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.
Abstract: Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4‐5km, yet the rupture did not break the surface. The Bam event may therefore represent an endmember case of the ‘shallow slip deficit’ model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4‐10km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.

439 citations

References
More filters
Book
01 Jan 1967

3,413 citations

01 Jan 1972
TL;DR: In this article, the authors examined more than 100 fault plane solutions for earthquakes within the Alpide belt between the Mid-Atlantic ridge and Eastern Iran and found that the deformation at present occurring is the result of small continental plates moving away from Eastern Turkey and Western Iran.
Abstract: Summary Examination of more than 100 fault plane solutions for earthquakes within the Alpide belt between the Mid-Atlantic ridge and Eastern Iran shows that the deformation at present occurring is the result of small continental plates moving away from Eastern Turkey and Western Iran. This pattern of movement avoids thickening the continental crust over much of Turkey by consuming the Eastern Mediterranean sea floor instead. The rates of relative motion of two of the small plates involved, the Aegean and the Turkish plates, are estimated, but are only within perhaps 50 per cent of the true values. These estimates are then used to reconstruct the geometry of the Mediterranean 10 million years ago. The principal difference from the present geometry is the smooth curved coast which then formed the southern coast of Yugoslavia, Greece and Turkey. This coast has since been distorted by the motion of the two small plates. Similar complications have probably been common in older mountain belts, and therefore local geological features may not have been formed by the motion between major plates. A curious feature of several of the large shocks for which fault plane solutions could be obtained for the main shock and one major aftershock was that the two often had different mechanisms.

2,378 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined more than 100 fault plane solutions for earthquakes within the Alpide belt between the Mid-Atlantic ridge and Eastern Iran and found that the deformation at present occurring is the result of small continental plates moving away from Eastern Turkey and Western Iran.
Abstract: Summary Examination of more than 100 fault plane solutions for earthquakes within the Alpide belt between the Mid-Atlantic ridge and Eastern Iran shows that the deformation at present occurring is the result of small continental plates moving away from Eastern Turkey and Western Iran. This pattern of movement avoids thickening the continental crust over much of Turkey by consuming the Eastern Mediterranean sea floor instead. The rates of relative motion of two of the small plates involved, the Aegean and the Turkish plates, are estimated, but are only within perhaps 50 per cent of the true values. These estimates are then used to reconstruct the geometry of the Mediterranean 10 million years ago. The principal difference from the present geometry is the smooth curved coast which then formed the southern coast of Yugoslavia, Greece and Turkey. This coast has since been distorted by the motion of the two small plates. Similar complications have probably been common in older mountain belts, and therefore local geological features may not have been formed by the motion between major plates. A curious feature of several of the large shocks for which fault plane solutions could be obtained for the main shock and one major aftershock was that the two often had different mechanisms.

2,342 citations

Journal ArticleDOI
TL;DR: In this article, an analysis of scarp-derived colluvium in trench exposures across the Wasatch fault provides estimates of the timing and displacement associated with individual surface faulting earthquakes.
Abstract: Paleoseismological data for the Wasatch and San Andreas fault zones have led to the formulation of the characteristic earthquake model, which postulates that individual faults and fault segments tend to generate essentially same size or characteristic earthquakes having a relatively narrow range of magnitudes near the maximum. Analysis of scarp-derived colluvium in trench exposures across the Wasatch fault provides estimates of the timing and displacement associated with individual surface faulting earthquakes. At all of the sites studied, the displacement per event has been consistently large; measured values range from 1.6 to 2.6 m, and the average is about 2 m. On the basis of variability in the timing of individual events as well as changes in scarp morphology and fault geometry, six major segments are recognized along the Wasatch fault. On the basis of the most likely number of surface faulting events (18) that have occurred on segments of the Wasatch fault zone during the past 8000 years, an average recurrence interval of 400–666 years with a preferred average of 444 years is calculated for the entire zone. Geologic data on the distribution of slip associated with prehistoric earthquakes and slip rates along the south-central segment of the San Andreas fault suggest that the M 8 1857 earthquake is a characteristic earthquake for this segment. Comparisons of earthquake recurrence relationships on both the Wasatch and San Andreas faults based on historical seismicity data and geologic data show that a linear (constant b value) extrapolation of the cumulative recurrence curve from the smaller magnitudes leads to gross underestimates of the frequency of occurrence of the large or characteristic earthquakes. Only by assuming a low b value in the moderate magnitude range can the seismicity data on small earthquakes be reconciled with geologic data on large earthquakes. The characteristic earthquake appears to be a fundamental aspect of the behavior of the Wasatch and San Andreas faults and may apply to many other faults as well.

1,381 citations

Trending Questions (1)
How is hummokey topography made in strike slip faults?

The provided paper does not mention anything about "hummokey topography" in strike-slip faults.