scispace - formally typeset
Journal ArticleDOI

Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

Reads0
Chats0
TLDR
Recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes are presented.
Abstract
Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal–nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic n...

read more

Citations
More filters
Journal ArticleDOI

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Journal ArticleDOI

An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation

TL;DR: The synthesis of ultrathin nickel-iron layered double hydroxide nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs) induced the formation of NiFe-LDH, which exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Journal ArticleDOI

Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution

TL;DR: This work demonstrates the successfully synergistic regulations of both structural and electronic benefits by controllable disorder engineering and simultaneous oxygen incorporation in MoS2 catalysts, leading to the dramatically enhanced HER activity.
Journal ArticleDOI

A metal–organic framework-derived bifunctional oxygen electrocatalyst

TL;DR: In this paper, a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C catalysts, is presented.
Journal ArticleDOI

Recent advances in zinc–air batteries

TL;DR: The fundamentals, challenges, and latest exciting advances related to zinc-air research are presented, and the detrimental effect of CO2 on battery performance is emphasized, and possible solutions summarized.
References
More filters
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

Heterogeneous photocatalyst materials for water splitting

TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Related Papers (5)