scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B.

01 Aug 2000-Nature Structural & Molecular Biology (Nature Publishing Group)-Vol. 7, Iss: 8, pp 693-699
TL;DR: The structures of BoNT/B and its complex with sialyllactose provide a detailed description of the active site and a model for interactions between the toxin and its cell surface receptor, and the latter may provide valuable information for recombinant vaccine development.
Abstract: Clostridium botulinum neurotoxins are among the most potent toxins to humans. The crystal structures of intact C. botulinum neurotoxin type B (BoNT/B) and its complex with sialyllactose, determined at 1. 8 and 2.6 A resolution, respectively, provide insight into its catalytic and binding sites. The position of the belt region in BoNT/B is different from that in BoNT/A; this observation presents interesting possibilities for designing specific inhibitors that could be used to block the activity of this neurotoxin. The structures of BoNT/B and its complex with sialyllactose provide a detailed description of the active site and a model for interactions between the toxin and its cell surface receptor. The latter may provide valuable information for recombinant vaccine development.
Citations
More filters
Journal ArticleDOI
David S. Auld1
TL;DR: The influence of zinc on quaternary protein structure has led to the identification of a fourth type of zinc binding site, protein interface, which is formed from ligands supplied from amino acid residues residing in the binding surface of two proteins.
Abstract: Zinc is known to be indispensable to growth and development and transmission of the genetic message. It does this through a remarkable mosaic of zinc binding motifs that orchestrate all aspects of metabolism. There are now nearly 200 three dimensional structures for zinc proteins, representing all six classes of enzymes and covering a wide range of phyla and species. These structures provide standards of reference for the identity and nature of zinc ligands in other proteins for which only the primary structure is known. Three primary types of zinc sites are apparent from examination of these structures: structural, catalytic and cocatalytic. The most common amino acids that supply ligands to these sites are His, Glu, Asp and Cys. In catalytic sites zinc generally forms complexes with water and any three nitrogen, oxygen and sulfur donors with His being the predominant amino acid chosen. Water is always a ligand to such sites. Structural zinc sites have four protein ligands and no bound water molecule. Cys is the preferred ligand in such sites. Cocatalytic sites contain two or three metals in close proximity with two of the metals bridged by a side chain moiety of a single amino acid residue, such as Asp, Glu or His and sometimes a water molecule. Asp and His are the preferred amino acids for these sites. No Cys ligands are found in such sites. The scaffolding of the zinc sites is also important to the function and reactivity of the bound metal. The influence of zinc on quaternary protein structure has led to the identification of a fourth type of zinc binding site, protein interface. In this case zinc sites are formed from ligands supplied from amino acid residues residing in the binding surface of two proteins. The resulting zinc site usually has the coordination properties of a catalytic or structural zinc binding site.

699 citations

Journal ArticleDOI
TL;DR: This review seeks to identify and characterize all major steps in toxin action, from initial absorption to eventual paralysis of cholinergic transmission, as well as an agent that can be used to treat disease.
Abstract: Botulinum toxin is a uniquely potent substance synthesized by the organisms Clostridium botulinum, Clostridium baratii, and Clostridium butyricum. This toxin, which acts preferentially on peripheral cholinergic nerve endings to block acetylcholine release, is both an agent that causes disease (i.e., botulism) as well as an agent that can be used to treat disease (e.g., dystonia). The ability of botulinum toxin to produce its effects is largely dependent on its ability to penetrate cellular and intracellular membranes. Thus, toxin that is ingested or inhaled can bind to epithelial cells and be transported to the general circulation. Toxin that reaches peripheral nerve endings binds to the cell surface then penetrates the plasma membrane by receptor-mediated endocytosis and the endosome membrane by pH-induced translocation. Internalized toxin acts in the cytosol as a metalloendoprotease to cleave polypeptides that are essential for exocytosis. This review seeks to identify and characterize all major steps in toxin action, from initial absorption to eventual paralysis of cholinergic transmission.

520 citations

Journal ArticleDOI
TL;DR: The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies, and suggest novel uses in therapeutics with increasing disease/symptom specifity.
Abstract: The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology.

465 citations


Cites background from "Structural analysis of the catalyti..."

  • ..., 1998) (A) and BoNT/B1 (PDB ID: 1EPW) (Swaminathan and Eswaramoorthy, 2000) (B) represented as space-filling models of the two opposite surfaces of each toxin molecule showing the organization of the three toxin domains: the neurospecific binding HC-C subdomain (green), the lectin-like HC-N subdomain (purple), the translocation HN domain (yellow), and the metalloprotease L domain (red)....

    [...]

  • ...1 (Lacy et al., 1998; Swaminathan and Eswaramoorthy, 2000; Montal, 2010)....

    [...]

  • ...1) (Lacy et al., 1998; Swaminathan and Eswaramoorthy, 2000; Kumaran et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: This Review discusses recent studies that have improved the understanding of the genetics and structure of the BoNT complexes and describes recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.
Abstract: Botulinum neurotoxins (BoNTs) are produced by anaerobic bacteria of the genus Clostridium and cause a persistent paralysis of peripheral nerve terminals, which is known as botulism. Neurotoxigenic clostridia belong to six phylogenetically distinct groups and produce more than 40 different BoNT types, which inactivate neurotransmitter release owing to their metalloprotease activity. In this Review, we discuss recent studies that have improved our understanding of the genetics and structure of BoNT complexes. We also describe recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.

456 citations

Journal ArticleDOI
TL;DR: The relationships between structure, mechanism of action and therapeutic use of botulinum neurotoxins are discussed.

403 citations

References
More filters
Book ChapterDOI
TL;DR: The methods presented in the chapter have been applied to solve a large variety of problems, from inorganic molecules with 5 A unit cell to rotavirus of 700 A diameters crystallized in 700 × 1000 × 1400 A cell.
Abstract: Publisher Summary X-ray data can be collected with zero-, one-, and two-dimensional detectors, zero-dimensional (single counter) being the simplest and two-dimensional the most efficient in terms of measuring diffracted X-rays in all directions. To analyze the single-crystal diffraction data collected with these detectors, several computer programs have been developed. Two-dimensional detectors and related software are now predominantly used to measure and integrate diffraction from single crystals of biological macromolecules. Macromolecular crystallography is an iterative process. To monitor the progress, the HKL package provides two tools: (1) statistics, both weighted (χ2) and unweighted (R-merge), where the Bayesian reasoning and multicomponent error model helps obtain proper error estimates and (2) visualization of the process, which helps an operator to confirm that the process of data reduction, including the resulting statistics, is correct and allows the evaluation of the problems for which there are no good statistical criteria. Visualization also provides confidence that the point of diminishing returns in data collection and reduction has been reached. At that point, the effort should be directed to solving the structure. The methods presented in the chapter have been applied to solve a large variety of problems, from inorganic molecules with 5 A unit cell to rotavirus of 700 A diameters crystallized in 700 × 1000 × 1400 A cell.

31,667 citations

Journal ArticleDOI
TL;DR: The PROCHECK suite of programs as mentioned in this paper provides a detailed check on the stereochemistry of a protein structure and provides an assessment of the overall quality of the structure as compared with well refined structures of the same resolution.
Abstract: The PROCHECK suite of programs provides a detailed check on the stereochemistry of a protein structure Its outputs comprise a number of plots in PostScript format and a comprehensive residue-by-residue listing These give an assessment of the overall quality of the structure as compared with well refined structures of the same resolution and also highlight regions that may need further investigation The PROCHECK programs are useful for assessing the quality not only of protein structures in the process of being solved but also of existing structures and of those being modelled on known structures

22,829 citations

Journal ArticleDOI
TL;DR: The CCP4 (Collaborative Computational Project, number 4) program suite is a collection of programs and associated data and subroutine libraries which can be used for macromolecular structure determination by X-ray crystallography.
Abstract: The CCP4 (Collaborative Computational Project, number 4) program suite is a collection of programs and associated data and subroutine libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims and so there may be more than one program to cover each function. The programs are written mainly in standard Fortran77. They are from a wide variety of sources but are connected by standard data file formats. The package has been ported to all the major platforms under both Unix and VMS. The suite is distributed by anonymous ftp from Daresbury Laboratory and is widely used throughout the world.

17,220 citations

Journal ArticleDOI
TL;DR: The Crystallography & NMR System (CNS) as mentioned in this paper is a software suite for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy.
Abstract: A new software suite, called Crystallography & NMR System (CNS), has been developed for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy. In contrast to existing structure-determination programs the architecture of CNS is highly flexible, allowing for extension to other structure-determination methods, such as electron microscopy and solid-state NMR spectroscopy. CNS has a hierarchical structure: a high-level hypertext markup language (HTML) user interface, task-oriented user input files, module files, a symbolic structure-determination language (CNS language), and low-level source code. Each layer is accessible to the user. The novice user may just use the HTML interface, while the more advanced user may use any of the other layers. The source code will be distributed, thus source-code modification is possible. The CNS language is sufficiently powerful and flexible that many new algorithms can be easily implemented in the CNS language without changes to the source code. The CNS language allows the user to perform operations on data structures, such as structure factors, electron-density maps, and atomic properties. The power of the CNS language has been demonstrated by the implementation of a comprehensive set of crystallographic procedures for phasing, density modification and refinement. User-friendly task-oriented input files are available for nearly all aspects of macromolecular structure determination by X-ray crystallography and solution NMR.

15,182 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe strategies and tools that help to alleviate this problem and simplify the model-building process, quantify the goodness of fit of the model on a per-residue basis and locate possible errors in peptide and side-chain conformations.
Abstract: Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the quality of the model. Strategies and tools are described that help to alleviate this problem. These simplify the model-building process, quantify the goodness of fit of the model on a per-residue basis and locate possible errors in peptide and side-chain conformations.

12,936 citations