scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Structural and Star-forming Relations since z similar to 3: Connecting Compact Star-forming and Quiescent Galaxies

TL;DR: In this article, the authors study the evolution of scaling relations that compare the effective density (Sigma(e), r 9.6 -9.3M(circle dot) kpc(-2), allowing the most efficient identification of compact SFGs and quiescent galaxies at every redshift.
Abstract: We study the evolution of the scaling relations that compare the effective density (Sigma(e), r 9.6 -9.3M(circle dot) kpc(-2), allowing the most efficient identification of compact SFGs and quiescent galaxies at every redshift.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A morphological catalogue for 670,000 galaxies in the Sloan Digital Sky Survey in two flavours: T-Type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme, provided by combining accurate existing visual classification catalogues with machine learning.
Abstract: We present a morphological catalogue for $\sim$ 670,000 galaxies in the Sloan Digital Sky Survey in two flavours: T-Type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-Types and a series of GZ2 type questions (disk/features, edge-on galaxies, bar signature, bulge prominence, roundness and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from S0, where the T-Type model is not so efficient. For the T-Type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (> 97\%), precision and recall values (> 90\%) when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.

251 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the SFR profiles of 864 galaxies as a function of their position relative to the global star forming main sequence (Delta SFR), and found that for quiescent/passive galaxies that lie at least a factor of 10 below the global main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of Delta Sigma_SFR in the central 3 kpc.
Abstract: The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star forming main sequence. Using ~487,000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (Sigma_SFR) and stellar mass (Sigma_mass) on kpc scales, representing a `resolved' main sequence. Using a new metric (Delta Sigma_SFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star forming main sequence (Delta SFR). For galaxies above the global main sequence (positive Delta SFR) Delta Sigma_SFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (< 3 kpc, or 0.5 R_e). Moreover, galaxies that are at least a factor of three above the main sequence show diluted gas phase metallicities out to 2 R_e, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star forming main sequence there is an analogous deficit of star formation throughout the galaxy with the lowest values of Delta Sigma_SFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

142 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied galactic star-formation activity as a function of environment and stellar mass over 0.5 9 (9.5) and showed that the effects of quenching related to stellar mass and environment are not separable.
Abstract: We study galactic star-formation activity as a function of environment and stellar mass over 0.5 9 (9.5)$ at z=1.3 (2.0). This method, when applied to a mock catalog with the photometric-redshift precision ($\sigma_z / (1+z) \lesssim 0.02$), recovers galaxies in low- and high-density environments accurately. We quantify the environmental quenching efficiency, and show that at z> 0.5 it depends on galaxy stellar mass, demonstrating that the effects of quenching related to (stellar) mass and environment are not separable. In high-density environments, the mass and environmental quenching efficiencies are comparable for massive galaxies ($\log (M/M_\odot)\gtrsim$ 10.5) at all redshifts. For lower mass galaxies ($\log (M/M)_\odot) \lesssim$ 10), the environmental quenching efficiency is very low at $z\gtrsim$ 1.5, but increases rapidly with decreasing redshift. Environmental quenching can account for nearly all quiescent lower mass galaxies ($\log(M/M_\odot) \sim$ 9-10), which appear primarily at $z\lesssim$ 1.0. The morphologies of lower mass quiescent galaxies are inconsistent with those expected of recently quenched star-forming galaxies. Some environmental process must transform the morphologies on similar timescales as the environmental quenching itself. The evolution of the environmental quenching favors models that combine gas starvation (as galaxies become satellites) with gas exhaustion through star-formation and outflows ("overconsumption"), and additional processes such as galaxy interactions, tidal stripping and disk fading to account for the morphological differences between the quiescent and star-forming galaxy populations.

115 citations

Journal ArticleDOI
TL;DR: In this paper, a kinematical decomposition of the stellar component into a spheroidal and a disc component (spheroid-to-total ratio, S/T) and the concentration of stellar mass density profile (C_{82}$) was proposed to quantify the relationship between galaxy morphology and star formation.
Abstract: Using the IllustrisTNG simulations, we investigate the connection between galaxy morphology and star formation in central galaxies with stellar masses in the range $10^9-10^{11.5}~\mathrm{M}_{\odot}$. We quantify galaxy morphology by a kinematical decomposition of the stellar component into a spheroidal and a disc component (spheroid-to-total ratio, S/T) and by the concentration of the stellar mass density profile ($C_{82}$). S/T is correlated with stellar mass and star-formation activity, while $C_{82}$ correlates only with stellar mass. Overall, we find good agreement with observational estimates for both S/T and $C_{82}$. Low and high mass galaxies are dominated by random stellar motion, while only intermediate-mass galaxies ($M_{\star}\approx10^{10}-10^{10.5}~\mathrm{M}_{\odot}$) are dominated by ordered rotation. Whereas higher-mass galaxies are typical spheroids with high concentrations, lower-mass galaxies have low concentration, pointing to different formation channels. Although we find a correlation between S/T and star-formation activity, in the TNG model galaxies do not necessarily change their morphology when they transition through the green valley or when they cease their star formation, this depending on galaxy stellar mass and morphological estimator. Instead, the morphology (S/T and $C_{82}$) is generally set during the star-forming phase of galaxies. The apparent correlation between S/T and star formation arises because earlier-forming galaxies had, on average, a higher S/T at a given stellar mass. Furthermore, we show that mergers drive in-situ bulge formation in intermediate-mass galaxies and are responsible for the recent spheroidal mass assembly in the massive galaxies with $M_{\star}>10^{11}~\mathrm{M}_{\odot}$. In particular, these massive galaxies assemble about half of the spheroidal mass while star-forming and the other half through mergers while quiescent.

108 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Abstract: We present a new model for computing the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities. These predictions are based on a newly available library of observed stellar spectra. We also compute the spectral evolution across a larger wavelength range, from 91 A to 160 micron, at lower resolution. The model incorporates recent progress in stellar evolution theory and an observationally motivated prescription for thermally-pulsing stars on the asymptotic giant branch. The latter is supported by observations of surface brightness fluctuations in nearby stellar populations. We show that this model reproduces well the observed optical and near-infrared colour-magnitude diagrams of Galactic star clusters of various ages and metallicities. Stochastic fluctuations in the numbers of stars in different evolutionary phases can account for the full range of observed integrated colours of star clusters in the Magellanic Clouds. The model reproduces in detail typical galaxy spectra from the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We exemplify how this type of spectral fit can constrain physical parameters such as the star formation history, metallicity and dust content of galaxies. Our model is the first to enable accurate studies of absorption-line strengths in galaxies containing stars over the full range of ages. Using the highest-quality spectra of the SDSS EDR, we show that this model can reproduce simultaneously the observed strengths of those Lick indices that do not depend strongly on element abundance ratios [abridged].

10,384 citations

Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Abstract: Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence and are key probes of the evolutionary histories of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field. One of the most recognizable features of galaxies along the Hubble sequence is the wide range in young stellar content and star formation activity. This variation in stellar content is part of the basis of the Hubble classification itself (Hubble 1926), and understanding its physical nature and origins is fundamental to understanding galaxy evolution in its broader context. This review deals with the global star formation properties of galaxies, the systematics of those properties along the Hubble sequence, and their implications for galactic evolution. I interpret “Hubble sequence” in this context very loosely, to encompass not only morphological type but other properties such as gas content, mass, bar structure, and dynamical environment, which can strongly influence the largescale star formation rate (SFR).

6,640 citations

Journal ArticleDOI
TL;DR: In this article, far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT is presented.
Abstract: We present far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at lambda approximately greater than 40 microns. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T approx. 40 - 55 K (warm dust) and T approx. 20-23 K (cool dust) and with a dust emissivity index epsilon = 2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to approx. 150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once resealed for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 microns and the IRAS FIR emission in the range 40 - 120 microns is approx. 1.75, with small variations from galaxy to galaxy. This ratio is about 40% larger than previously inferred from data at millimeter wavelengths. Although the galaxies in our sample are generally classified as "UV bright," for four of them the UV energy emerging shortward of 0.2 microns is less than 15% of the FIR energy. On average, about 30% of the bolometric flux is coming out in the UV-to-near-IR wavelength range; the rest is emitted in the FIR. Energy balance calculations show that the FIR emission predicted by the dust reddening of the UV-to-near-IR stellar emission is within a factor of approx. 2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z approx. greater than 1), UV - bright star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys, unless: (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.

5,255 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the properties of the host galaxies of 22 623 narrow-line active galactic nuclei (AGN) with 0.02 < z < 0.3 selected from a complete sample of 122 808 galaxies from the Sloan Digital Sky Survey.
Abstract: We examine the properties of the host galaxies of 22 623 narrow-line active galactic nuclei (AGN) with 0.02 < z < 0.3 selected from a complete sample of 122 808 galaxies from the Sloan Digital Sky Survey. We focus on the luminosity of the [O III] λ5007 emission line as a tracer of the strength of activity in the nucleus. We study how AGN host properties compare with those of normal galaxies and how they depend on L[O III]. We find that AGN of all luminosities reside almost exclusively in massive galaxies and have distributions of sizes, stellar surface mass densities and concentrations that are similar to those of ordinary early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high-luminosity AGN have much younger mean stellar ages. The young stars are not preferentially located near the nucleus of the galaxy, but are spread out over scales of at least several kiloparsecs. A significant fraction of high-luminosity AGN have strong Hδ absorption-line equivalent widths, indicating that they experienced a burst of star formation in the recent past. We have also examined the stellar populations of the host galaxies of a sample of broad-line AGN. We conclude that there is no significant difference in stellar content between type 2 Seyfert hosts and quasars (QSOs) with the same [O III] luminosity and redshift. This establishes that a young stellar population is a general property of AGN with high [O III] luminosities.

3,781 citations

Related Papers (5)
Norman A. Grogin, Dale D. Kocevski, Sandra M. Faber, Henry C. Ferguson, Anton M. Koekemoer, Adam G. Riess, Viviana Acquaviva, David M. Alexander, Omar Almaini, Matthew L. N. Ashby, Marco Barden, Eric F. Bell, Frédéric Bournaud, Thomas M. Brown, Karina Caputi, Stefano Casertano, Paolo Cassata, Marco Castellano, Peter Challis, Ranga-Ram Chary, Edmond Cheung, Michele Cirasuolo, Christopher J. Conselice, Asantha Cooray, Darren J. Croton, Emanuele Daddi, Tomas Dahlen, Romeel Davé, Duilia F. de Mello, Duilia F. de Mello, Avishai Dekel, Mark Dickinson, Timothy Dolch, Jennifer L. Donley, James Dunlop, Aaron A. Dutton, David Elbaz, Giovanni G. Fazio, Alexei V. Filippenko, Steven L. Finkelstein, Adriano Fontana, Jonathan P. Gardner, Peter M. Garnavich, Eric Gawiser, Mauro Giavalisco, Andrea Grazian, Yicheng Guo, Nimish P. Hathi, Boris Häussler, Philip F. Hopkins, Jiasheng Huang, Kuang-Han Huang, Kuang-Han Huang, Saurabh Jha, Jeyhan S. Kartaltepe, Robert P. Kirshner, David C. Koo, Kamson Lai, Kyoung-Soo Lee, Weidong Li, Jennifer M. Lotz, Ray A. Lucas, Piero Madau, Patrick J. McCarthy, Elizabeth J. McGrath, Daniel H. McIntosh, Ross J. McLure, Bahram Mobasher, Leonidas A. Moustakas, Mark Mozena, Kirpal Nandra, Jeffrey A. Newman, Sami Niemi, Kai G. Noeske, Casey Papovich, Laura Pentericci, Alexandra Pope, Joel R. Primack, Abhijith Rajan, Swara Ravindranath, Naveen A. Reddy, Alvio Renzini, Hans-Walter Rix, Aday R. Robaina, Steven A. Rodney, David J. Rosario, Piero Rosati, S. Salimbeni, Claudia Scarlata, Brian Siana, Luc Simard, Joseph Smidt, Rachel S. Somerville, Hyron Spinrad, Amber Straughn, Louis-Gregory Strolger, Olivia Telford, Harry I. Teplitz, Jonathan R. Trump, Arjen van der Wel, Carolin Villforth, Risa H. Wechsler, Benjamin J. Weiner, Tommy Wiklind, Vivienne Wild, Grant W. Wilson, Stijn Wuyts, Hao Jing Yan, Min S. Yun