scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts

TL;DR: In this article, the authors compare three pairs of conjugate rifted margins that are often referred to as archetypes of rift systems and conclude that the distinct domains observed in the margin architecture represent distinct stages in the evolution of rifted margin, independently of their later evolution into magma-poor or magma rich environments.
About: This article is published in Marine and Petroleum Geology.The article was published on 2013-05-01. It has received 299 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors use seismic interpretation, gravity inversion, and field mapping to identify and map former rift domains and their subsequent reactivation, and propose a new map and sections across the system illustrating the progressive integration of the rift domains into the orogen.
Abstract: The Bay of Biscay and the Pyrenees correspond to a Lower Cretaceous rift system including both oceanic and hyperextended rift domains. The transition from preserved oceanic and rift domains in the West to their complete inversion in the East enables us to study the progressive reactivation of a hyperextended rift system. We use seismic interpretation, gravity inversion, and field mapping to identify and map former rift domains and their subsequent reactivation. We propose a new map and sections across the system illustrating the progressive integration of the rift domains into the orogen. This study aims to provide insights on the formation of hyperextended rift systems and discuss their role during reactivation. Two spatially and temporally distinct rift systems can be distinguished: the Bay of Biscay-Parentis and the Pyrenean-Basque-Cantabrian rifts. While the offshore Bay of Biscay represent a former mature oceanic domain, the fossil remnants of hyperextended domains preserved onshore in the Pyrenean-Cantabrian orogen record distributed extensional deformation partitioned between strongly segmented rift basins. Reactivation initiated in the exhumed mantle domain before it affected the hyperthinned domain. Both domains accommodated most of the shortening. The final architecture of the orogen is acquired once the conjugate necking domains became involved in collisional processes. The complex 3-D architecture of the initial rift system may partly explain the heterogeneous reactivation of the overall system. These results have important implications for the formation and reactivation of hyperextended rift systems and for the restoration of the Bay of Biscay and Pyrenean domains

252 citations

Journal ArticleDOI
TL;DR: In this article, a conceptual model for rift-evolution at conjugate magma-poor margins in time and space is presented, based on the early Cenozoic South China Sea rift architecture at the distal margins.

246 citations

MonographDOI
01 Jan 2017
TL;DR: The salt tectonics is the study of how and why salt structures evolve and the three-dimensional forms that result as discussed by the authors, and it is also vitally important to the petroleum industry.
Abstract: Salt tectonics is the study of how and why salt structures evolve and the three-dimensional forms that result. A fascinating branch of geology in itself, salt tectonics is also vitally important to the petroleum industry. Covering the entire scale from the microscopic to the continental, this textbook is an unrivalled consolidation of all topics related to salt tectonics: evaporite deposition and flow, salt structures, salt systems, and practical applications. Coverage of the principles of salt tectonics is supported by more than 600 color illustrations, including 200 seismic images captured by state-of-the-art geophysical techniques and tectonic models from the Applied Geodynamics Laboratory at the University of Texas, Austin. These combine to provide a cohesive and wide-ranging insight into this extremely visual subject. This is the definitive practical handbook for professional geologists and geophysicists in the petroleum industry, an invaluable textbook for graduate students, and a reference textbook for researchers in various geoscience fields.

234 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic, showing initiation of mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust.
Abstract: Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere.

168 citations

Journal ArticleDOI
TL;DR: The Uinta Mountain Group comprises fluvial to marine, feldspathic to quartzose sandstone, conglomerate, and mudstone, with detrital zircon (DZ) patterns recording local basement sources along an evolving rift margin and felsic volcanism from ~700 to 670 ǫ as discussed by the authors.

164 citations


Cites background from "Structural comparison of archetypal..."

  • ...Broadly similar histories have been interpreted for other regions, such as the Atlantic and South China passive margins (Mosar et al., 2002; Davis and Kusznir, 2004; Clark et al., 2013; Peron-Pinvidic et al., 2013)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A simple model for the development and evolution of sedimentary basins is proposed in this paper, which consists of a rapid stretching of continental lithosphere, which produces thinning and passive upwelling of hot asthenosphere.

3,711 citations

BookDOI
01 Jan 2004
TL;DR: Gradstein et al. as discussed by the authors proposed a chronostratigraphy approach for linking time and rock in the context of geologic time scales, including the geomagnetic polarity time scale and stable isotope geochronology.
Abstract: Part I. Introduction: 1. Introduction F. M. Gradstein 2. Chronostratigraphy - linking time and rock F. M. Gradstein, J. G. Ogg and A. G. Smith Part II. Concepts and Methods: 3. Biostratigraphy F. M. Gradstein, R. A. Cooper and P. M. Sadler 4. Earth's orbital parameters and cycle stratigraphy L. A. Hinnov 5. The geomagnetic polarity time scale J. G. Ogg and A. G. Smith 6. Radiogenic isotope geochronology M. Villeneuve 7. Stable isotopes J. M. McArthur and R. J. Howarth 8. Geomathematics F. P. Agterberg Part III. Geologic Periods: 9. The Precambrian: the Archaen and Proterozoic eons L. J. Robb, A. H. Knoll, K. A. Plumb, G. A. Shields, H. Strauss and J. Veizer 10. Toward a 'natural' Precambrian time scale W. Bleeker 11. The Cambrian period J. H. Shergold and R. A. Cooper 12. The Ordovician period R. A. Cooper and P. M. Sadler 13. The Silurian period M. J. Melchin, R. A. Cooper and P. M. Sadler 14. The Devonian period M. R. House and F. M. Gradstein 15. The Carboniferous period V. Davydov, B. R. Wardlaw and F. M. Gradstein 16. The Permian period B. R. Wardlaw, V. Davydov and F. M. Gradstein 17. The Triassic period J. G. Ogg 18. The Jurassic period J. G. Ogg 19. The Cretaceous Period J. G. Ogg, F. P. Agterberg and F. M. Gradstein 20. The Paleogene period H. P. Luterbacher, J. R. Ali, H. Brinkhuis, F. M. Gradstein, J. J. Hooker, S. Monechi, J. G. Ogg, J. Powell, U. Rohl, A. Sanfilippo, and B. Schmitz 21. The Neogene period L. Lourens, F. Hilgen, N. J. Shackleton, J. Laskar and D. Wilson 22. The Pleistocene and Holocene epochs P. Gibbard and T. van Kolfschoten Part IV. Summary: 23. Construction and summary of the geologic time scale F. M.. Gradstein, J. G. Ogg and A. G. Smith Appendices Bibliography Stratigraphic index General index.

2,890 citations

Journal ArticleDOI
TL;DR: In this article, the authors suggest that the thin crust characteristic of the Basin and Range Province extends eastward beneath the west margin of the Colorado Plateau and the Rocky Mountain regions.
Abstract: Geophysical studies suggest that the thin crust characteristic of the Basin and Range Province extends eastward beneath the west margin of the Colorado Plateau and Rocky Mountain regions. In Arizon...

1,439 citations