scispace - formally typeset
Search or ask a question
Book

Structural Equations with Latent Variables

28 Apr 1989-
TL;DR: The General Model, Part I: Latent Variable and Measurement Models Combined, Part II: Extensions, Part III: Extensions and Part IV: Confirmatory Factor Analysis as discussed by the authors.
Abstract: Model Notation, Covariances, and Path Analysis. Causality and Causal Models. Structural Equation Models with Observed Variables. The Consequences of Measurement Error. Measurement Models: The Relation Between Latent and Observed Variables. Confirmatory Factor Analysis. The General Model, Part I: Latent Variable and Measurement Models Combined. The General Model, Part II: Extensions. Appendices. Distribution Theory. References. Index.
Citations
More filters
Journal ArticleDOI
TL;DR: The extent to which method biases influence behavioral research results is examined, potential sources of method biases are identified, the cognitive processes through which method bias influence responses to measures are discussed, the many different procedural and statistical techniques that can be used to control method biases is evaluated, and recommendations for how to select appropriate procedural and Statistical remedies are provided.
Abstract: Interest in the problem of method biases has a long history in the behavioral sciences. Despite this, a comprehensive summary of the potential sources of method biases and how to control for them does not exist. Therefore, the purpose of this article is to examine the extent to which method biases influence behavioral research results, identify potential sources of method biases, discuss the cognitive processes through which method biases influence responses to measures, evaluate the many different procedural and statistical techniques that can be used to control method biases, and provide recommendations for how to select appropriate procedural and statistical remedies for different types of research settings.

52,531 citations

Journal ArticleDOI
TL;DR: An overview of simple and multiple mediation is provided and three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model are explored.
Abstract: Hypotheses involving mediation are common in the behavioral sciences. Mediation exists when a predictor affects a dependent variable indirectly through at least one intervening variable, or mediator. Methods to assess mediation involving multiple simultaneous mediators have received little attention in the methodological literature despite a clear need. We provide an overview of simple and multiple mediation and explore three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model. We present an illustrative example, assessing and contrasting potential mediators of the relationship between the helpfulness of socialization agents and job satisfaction. We also provide SAS and SPSS macros, as well as Mplus and LISREL syntax, to facilitate the use of these methods in applications.

25,799 citations

Journal ArticleDOI
TL;DR: The aims behind the development of the lavaan package are explained, an overview of its most important features are given, and some examples to illustrate how lavaan works in practice are provided.
Abstract: Structural equation modeling (SEM) is a vast field and widely used by many applied researchers in the social and behavioral sciences. Over the years, many software packages for structural equation modeling have been developed, both free and commercial. However, perhaps the best state-of-the-art software packages in this field are still closed-source and/or commercial. The R package lavaan has been developed to provide applied researchers, teachers, and statisticians, a free, fully open-source, but commercial-quality package for latent variable modeling. This paper explains the aims behind the development of the package, gives an overview of its most important features, and provides some examples to illustrate how lavaan works in practice.

14,401 citations

Journal ArticleDOI
TL;DR: In this paper, the heterotrait-monotrait ratio of correlations is used to assess discriminant validity in variance-based structural equation modeling. But it does not reliably detect the lack of validity in common research situations.
Abstract: Discriminant validity assessment has become a generally accepted prerequisite for analyzing relationships between latent variables. For variance-based structural equation modeling, such as partial least squares, the Fornell-Larcker criterion and the examination of cross-loadings are the dominant approaches for evaluating discriminant validity. By means of a simulation study, we show that these approaches do not reliably detect the lack of discriminant validity in common research situations. We therefore propose an alternative approach, based on the multitrait-multimethod matrix, to assess discriminant validity: the heterotrait-monotrait ratio of correlations. We demonstrate its superior performance by means of a Monte Carlo simulation study, in which we compare the new approach to the Fornell-Larcker criterion and the assessment of (partial) cross-loadings. Finally, we provide guidelines on how to handle discriminant validity issues in variance-based structural equation modeling.

12,855 citations

Journal ArticleDOI
TL;DR: The authors conclude that PLS-SEM path modeling, if appropriately applied, is indeed a "silver bullet" for estimating causal models in many theoretical models and empirical data situations.
Abstract: Structural equation modeling (SEM) has become a quasi-standard in marketing and management research when it comes to analyzing the cause-effect relations between latent constructs. For most researchers, SEM is equivalent to carrying out covariance-based SEM (CB-SEM). While marketing researchers have a basic understanding of CB-SEM, most of them are only barely familiar with the other useful approach to SEM-partial least squares SEM (PLS-SEM). The current paper reviews PLS-SEM and its algorithm, and provides an overview of when it can be most appropriately applied, indicating its potential and limitations for future research. The authors conclude that PLS-SEM path modeling, if appropriately applied, is indeed a "silver bullet" for estimating causal models in many theoretical models and empirical data situations.

11,624 citations