scispace - formally typeset
Search or ask a question

Structural properties of hydrogenated amorphous silicon (A-SI:H) thin film grown via radio frequency plasma enhanced chemical vapor deposition (RF PECVD)

TL;DR: In this paper, the structural properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by plasma enhanced chemical vapour deposition of silane (SiH4) was done using a combination of atomic force microscopy (AFM), photoluminescence, infrared and UV spectroscopy.
Abstract: An investigation of the structural properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by plasma enhanced chemical vapour deposition of silane (SiH4) was done using a combination of atomic force microscopy (AFM), photoluminescence, infrared and UV spectroscopy. Films were prepared with rf power ranging from 100-250 W. For every rf power employed, substrate temperature were varied from room temperature to 300°C. The deposition rate was found to be slightly increasing with an increase of rf power while decreasing as the substrate temperature increases. The AFM images can be classified into three groups: most smooth (rms: 1.2nm), intermediate rms (2.4-3.6 nm) and highest roughness (rms: 4.9 nm). The transition to rougher films at higher substrate temperature is attributed to a change in the deposition process. The IR vibrational spectra obtained from FTIR spectroscopy display modes which can be characterized as predominantly hydrogen motions. On the basis of these identifications, it is found that samples produced on high-temperature have SiH, SiH2 and (SiH2)n groups with very little SiH3. In contrast, the ir spectra of samples produced on room-temperature are dominated by vibrational modes of SiH3 and (SiH2)n. At low rf power, the spectrum is dominated by a strong absorption bands at 2000 cm-1 associated with SiH stretching bond and also 630 cm-1 associated with SiH bending. At high rf power, an additional absorption band at around 2090 cm-1 which corresponds to (SiH2)n stretching mode and SiH2 stretching mode becomes more pronounced. The optical energy gap obtained from UV spectroscopy decreases with increasing of rf power and substrate temperature. This decrement is due to the drop of hydrogen content. At low substrate temperature, photoluminescence spectrum of a-Si consists of a relatively broad band with its main peak around 1.4 eV. The spectrum shifts to lower energies (around 1.37 eV) and its intensity decreases with increasing temperature. It is suggested that this is due to an activated non-radiative recombination (relaxation) process where exciton are captured by deep traps and this become more probable as temperature increases.
More filters
01 Jan 1962
TL;DR: In this article, the authors present a survey of research work in physics, physical sciences, and physical chemistry, focusing on physics, chemistry, physics, and biology. But they do not discuss their work in this paper.
Abstract: This book should be of interest to senior undergraduates, postgraduates and research workers in physics, physical sciences, physical chemistry.

8,754 citations

01 Oct 1991
TL;DR: In this article, the authors present an overview of the history of electric discharge physics and its application in the field of gas discharging in the presence of longitudinal gradients of charge density.
Abstract: 1. Introduction.- 1.1 What Is the Subject of Gas Discharge Physics.- 1.2 Typical Discharges in a Constant Electric Field.- 1.3 Classification of Discharges.- 1.4 Brief History of Electric Discharge Research.- 1.5 Organization of the Book. Bibliography.- 2. Drift, Energy and Diffusion of Charged Particles in Constant Fields.- 2.1 Drift of Electrons in a Weakly Ionized Gas.- 2.2 Conduction of Ionized Gas.- 2.3 Electron Energy.- 2.4 Diffusion of Electrons.- 2.5 Ions.- 2.6 Ambipolar Diffusion.- 2.7 Electric Current in Plasma in the Presence of Longitudinal Gradients of Charge Density.- 2.8 Hydrodynamic Description of Electrons.- 3. Interaction of Electrons in an Ionized Gas with Oscillating Electric Field and Electromagnetic Waves.- 3.1 The Motion of Electrons in Oscillating Fields.- 3.2 Electron Energy.- 3.3 Basic Equations of Electrodynamics of Continuous Media.- 3.4 High-Frequency Conductivity and Dielectric Permittivity of Plasma.- 3.5 Propagation of Electromagnetic, Waves in Plasmas.- 3.6 Total Reflection of Electromagnetic Waves from Plasma and Plasma Oscillations.- 4. Production and Decay of Charged Particles.- 4.1 Electron Impact Ionization in a Constant Field.- 4.2 Other Ionization Mechanisms.- 4.3 Bulk Recombination.- 4.4 Formation and Decay of Negative Ions.- 4.5 Diffusional Loss of Charges.- 4.6 Electron Emission from Solids.- 4.7 Multiplication of Charges in a Gas via Secondary Emission.- 5. Kinetic Equation for Electrons in a Weakly Ionized Gas Placed in an Electric Field.- 5.1 Description of Electron Processes in Terms of the Velocity Distribution Function.- 5.2 Formulation of the Kinetic Equation.- 5.3 Approximation for the Angular Dependence of the Distribution Function.- 5.4 Equation of the Electron Energy Spectrum.- 5.5 Validity Criteria for the Spectrum Equation.- 5.6 Comparison of Some Conclusions Implied by the Kinetic Equation with the Result of Elementary Theory.- 5.7 Stationary Spectrum of Electrons in a Field in the Case of only Elastic Losses.- 5.8 Numerical Results for Nitrogen and Air.- 5.9 Spatially Nonuniform Fields of Arbitrary Strength.- 6. Electric Probes.- 6.1 Introduction. Electric Circuit.- 6.2 Current-Voltage Characteristic of a Single Probe.- 6.3 Theoretical Foundations of Electronic Current Diagnostics of Rarefied Plasmas.- 6.4 Procedure for Measuring the Distribution Function.- 6.5 Ionic Current to a Probe in Rarefied Plasma.- 6.6 Vacuum Diode Current and Space-Charge Layer Close to a Charged Body.- 6.7 Double Probe.- 6.8 Probe in a High-Pressure Plasma.- 7. Breakdown of Gases in Fields of Various Frequency Ranges.- 7.1 Essential Characteristics of the Phenomenon.- 7.2 Breakdown and Triggering of Self-Sustained Discharge in a Constant Homogeneous Field at Moderately Large Product of Pressure and Discharge Gap Width.- 7.3 Breakdown in Microwave Fields and Interpretation of Experimental Data Using the Elementary Theory.- 7.4 Calculation of Ionization Frequencies and Breakdown Thresholds Using the Kinetic Equation.- 7.5 Optical Breakdown.- 7.6 Methods of Exciting an RF Field in a Discharge Volume.- 7.7 Breakdown in RF and Low-Frequency Ranges.- 8. Stable Glow Discharge.- 8.1 General Structure and Observable Features.- 8.2 Current-Voltage Characteristic of Discharge Between Electrodes.- 8.3 Dark Discharge and the Role Played by Space Charge in the Formation of the Cathode Layer.- 8.4 Cathode Layer.- 8.5 Transition Region Between the Cathode Layer and the Homogeneous Positive Column.- 8.6 Positive Column.- 8.7 Heating of the Gas and Its Effect on the Current-Voltage Characteristic.- 8.8 Electronegative Gas Plasma.- 8.9 Discharge in Fast Gas Flow.- 8.10 Anode Layer.- 9. Glow Discharge Instabilities and Their Consequences.- 9.1 Causes and Consequences of Instabilities.- 9.2 Quasisteady Parameters.- 9.3 Field and Electron Temperature Perturbations in the Case of Quasisteady-State Te.- 9.4 Thermal Instability.- 9.5 Attachment Instability.- 9.6 Some Other Frequently Encountered Destabilizing Mechanisms.- 9.7 Striations.- 9.8 Contraction of the Positive Column.- 10. Arc Discharge.- 10.1 Definition and Characteristic Features of Arc Discharge.- 10.2 Arc Types.- 10.3 Arc Initiation.- 10.4 Carbon Arc in Free Air.- 10.5 Hot Cathode Arc: Processes near the Cathode.- 10.6 Cathode Spots and Vacuum Arc.- 10.7 Anode Region.- 10.8 Low-Pressure Arc with Externally Heated Cathode.- 10.9 Positive Column of High-Pressure Arc (Experimental Data).- 10.10 Plasma Temperature and V - i Characteristic of High-Pressure Arc Columns.- 10.11 The Gap Between Electron and Gas Temperatures in "Equilibrium" Plasma.- 11. Suslainment and Production of Equilibrium Plasma by Fields in Various Frequency Ranges.- 11.1 Introduction. Energy Balance in Plasma.- 11.2 Arc Column in a Constant Field.- 11.3 Inductively Coupled Radio-Frequency Discharge.- 11.4 Discharge in Microwave Fields.- 11.5 Continuous Optical Discharges.- 11.6 Plasmatrons: Generators of Dense Low-Temperature Plasma.- 12. Spark and Corona Discharges.- 12.1 General Concepts.- 12.2 Individual Electron Avalanche.- 12.3 Concept of Streamers.- 12.4 Breakdown and Streamers in Electronegative Gases (Air) in Moderately Wide Gaps with a Uniform Field.- 12.5 Spark Channel.- 12.6 Corona Discharge.- 12.7 Models of Streamer Propagation.- 12.8 Breakdown in Long Air Gaps with Strongly Nonuniform Fields (Experimental Data).- 12.9 Leader Mechanism of Breakdown of Long Gaps.- 12.10 Return Wave (Return Stroke).- 12.11 Lightning.- 12.12 Negative Stepped Leader.- 13. Capacitively Coupled Radio-Frequency Discharge.- 13.1 Drift Oscillations of Electron Gas.- 13.2 Idealized Model of the Passage of High-Frequency Current Through a Long Plane Gap at Elevated Pressures.- 13.3 V - i Characteristic of Homogeneous Positive Columns.- 13.4 Two Forms of CCRF Discharge Realization and Constant Positive Potential of Space: Experiment.- 13.5 Electrical Processes in a Nonconducting Electrode Layer and the Mechanism of Closing the Circuit Current.- 13.6 Constant Positive Potential of the Weak-Current Discharge Plasma.- 13.7 High-Current Mode.- 13.8 The Structure of a Medium-Pressure Discharge: Results of Numerical Modeling.- 13.9 Normal Current Density in Weak-Current Mode and Limits on the Existence of this Mode.- 14. Discharges in High-Power CW CO2 Lasers.- 14.1 Principles of Operation of Electric-Discharge CO2 Lasers.- 14.2 Two Methods of Heat Removal from Lasers.- 14.3 Methods of Suppressing Instabilities.- 14.4 Organization of Large-Volume Discharges Involving Gas Pumping.- References.

4,306 citations

Journal ArticleDOI

4,073 citations

R. A. Street1
30 Aug 1991
TL;DR: In this article, the electronic density of states of amorphous silicon and their electronic states have been investigated in terms of defect reactions, thermal equilibrium and metastability, as well as their electronic properties.
Abstract: 1. Introduction 2. Growth and structure of amorphous silicon 3. The electronic density of states 4. Defects and their electronic states 5. Substitutional doping 6. Defect reactions, thermal equilibrium and metastability 7. Electronic transport 8. Recombination of excess carriers 9. Contacts, interfaces and multilayers 10. Amorphous silicon device technology.

2,003 citations