scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Structure and dynamics of core/periphery networks

TL;DR: In this article, the authors summarize the current knowledge of the structure and dynamics of core/periphery networks, including rich-clubs, nested, bow-tie and onion networks.
Abstract: Recent studies uncovered important core/periphery network structures characterizing complex sets of cooperative and competitive interactions between network nodes, be they proteins, cells, species or humans. Better characterization of the structure, dynamics and function of core/periphery networks is the key step to our understanding of cellular functions, species adaptation, social and market changes. Here we summarize the current knowledge of the structure and dynamics of ‘traditional’ core/periphery networks, rich-clubs, nested, bow-tie and onion networks. By comparing core/periphery structures with network modules, we discriminate between global and local cores. The core/periphery network organization lies in the middle of several extreme properties, such as random/condensed structures, clique/star configurations, network symmetry/asymmetry, network assortativity/disassortativity, as well as network hierarchy/anti-hierarchy. These properties of high complexity together with the large degeneracy of core pathways ensuring cooperation and providing multiple options of network flow re-channelling greatly contribute to the high robustness of complex systems. Core processes enable a coordinated response to various stimuli, decrease noise and evolve slowly. The integrative function of network cores is an important step in the development of a large variety of complex organisms and organizations. In addition to these important features and several decades of research interest, studies on core/periphery networks still have a number of unexplored areas.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
30 Mar 2015-PLOS ONE
TL;DR: A model to predict social status of individuals with 93% accuracy is developed and it is shown that high-status individuals are more likely to be spanned as structural holes by linking to people in parts of the enterprise networks that are otherwise not well connected to one another.
Abstract: Social status, defined as the relative rank or position that an individual holds in a social hierarchy, is known to be among the most important motivating forces in social behaviors. In this paper, we consider the notion of status from the perspective of a position or title held by a person in an enterprise. We study the intersection of social status and social networks in an enterprise. We study whether enterprise communication logs can help reveal how social interactions and individual status manifest themselves in social networks. To that end, we use two enterprise datasets with three communication channels — voice call, short message, and email — to demonstrate the social-behavioral differences among individuals with different status. We have several interesting findings and based on these findings we also develop a model to predict social status. On the individual level, high-status individuals are more likely to be spanned as structural holes by linking to people in parts of the enterprise networks that are otherwise not well connected to one another. On the community level, the principle of homophily, social balance and clique theory generally indicate a “rich club” maintained by high-status individuals, in the sense that this community is much more connected, balanced and dense. Our model can predict social status of individuals with 93% accuracy.

436 citations

Journal ArticleDOI
TL;DR: It is found that faculty hiring follows a common and steeply hierarchical structure that reflects profound social inequality and increased institutional prestige leads to increased faculty production, better faculty placement, and a more influential position within the discipline.
Abstract: The faculty job market plays a fundamental role in shaping research priorities, educational outcomes, and career trajectories among scientists and institutions. However, a quantitative understanding of faculty hiring as a system is lacking. Using a simple technique to extract the institutional prestige ranking that best explains an observed faculty hiring network—who hires whose graduates as faculty—we present and analyze comprehensive placement data on nearly 19,000 regular faculty in three disparate disciplines. Across disciplines, we find that faculty hiring follows a common and steeply hierarchical structure that reflects profound social inequality. Furthermore, doctoral prestige alone better predicts ultimate placement than a U.S. News & World Report rank, women generally place worse than men, and increased institutional prestige leads to increased faculty production, better faculty placement, and a more influential position within the discipline. These results advance our ability to quantify the influence of prestige in academia and shed new light on the academic system.

428 citations

Journal ArticleDOI
TL;DR: The theory and applications of random walks on networks are surveyed, restricting ourselves to simple cases of single and non-adaptive random walkers, and three main types are distinguished: discrete-time random walks, node-centric continuous-timerandom walks, and edge-centric Continuous-Time random walks.
Abstract: Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.

397 citations

Journal ArticleDOI
TL;DR: Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures as discussed by the authors, and they are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can extract information about important entities or dense groups of entities in networks.

375 citations

Journal ArticleDOI
30 Nov 2015-PLOS ONE
TL;DR: This work analyzes three datasets tracking protest communication in different languages and political contexts through the social media platform Twitter and employs a network decomposition technique to examine their hierarchical structure, providing consistent evidence that peripheral participants are critical in increasing the reach of protest messages and generating online content at levels that are comparable to core participants.
Abstract: Social media have provided instrumental means of communication in many recent political protests. The efficiency of online networks in disseminating timely information has been praised by many commentators; at the same time, users are often derided as “slacktivists” because of the shallow commitment involved in clicking a forwarding button. Here we consider the role of these peripheral online participants, the immense majority of users who surround the small epicenter of protests, representing layers of diminishing online activity around the committed minority. We analyze three datasets tracking protest communication in different languages and political contexts through the social media platform Twitter and employ a network decomposition technique to examine their hierarchical structure. We provide consistent evidence that peripheral participants are critical in increasing the reach of protest messages and generating online content at levels that are comparable to core participants. Although committed minorities may constitute the heart of protest movements, our results suggest that their success in maximizing the number of online citizens exposed to protest messages depends, at least in part, on activating the critical periphery. Peripheral users are less active on a per capita basis, but their power lies in their numbers: their aggregate contribution to the spread of protest messages is comparable in magnitude to that of core participants. An analysis of two other datasets unrelated to mass protests strengthens our interpretation that core-periphery dynamics are characteristically important in the context of collective action events. Theoretical models of diffusion in social networks would benefit from increased attention to the role of peripheral nodes in the propagation of information and behavior.

249 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors develop one of perhaps multiple specifications of embeddedness, a concept that has been used to refer broadly to the contingent nature of economic action with respect to cognition, social structure, institutions, and culture.
Abstract: This chapter aims to develop one of perhaps multiple specifications of embeddedness, a concept that has been used to refer broadly to the contingent nature of economic action with respect to cognition, social structure, institutions, and culture. Research on embeddedness is an exciting area in sociology and economics because it advances understanding of how social structure affects economic life. The chapter addresses propositions about the operation and outcomes of interfirm networks that are guided implicitly by ceteris paribus assumptions. While economies of time due to embeddedness have obvious benefits for the individual firm, they also have important implications for allocative efficiency and the determination of prices. Under the conditions, social processes that increase integration combine with resource dependency problems to increase the vulnerability of networked organizations. The level of investment in an economy promotes positive changes in productivity, standards of living, mobility, and wealth generation.

9,137 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations

Journal ArticleDOI
27 Jul 2000-Nature
TL;DR: It is found that scale-free networks, which include the World-Wide Web, the Internet, social networks and cells, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates.
Abstract: Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network1. Complex communication networks2 display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web3,4,5, the Internet6, social networks7 and cells8. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

7,697 citations

Book
30 Dec 1991
TL;DR: In this article, the development of social network analysis, tracing its origins in classical sociology and its more recent formulation in social scientific and mathematical work, is described and discussed. But it is argued that the analysis of social networks is not a purely static process.
Abstract: This paper reports on the development of social network analysis, tracing its origins in classical sociology and its more recent formulation in social scientific and mathematical work. It is argued...

6,366 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: After defining a set of new characteristic quantities for the statistics of communities, this work applies an efficient technique for exploring overlapping communities on a large scale and finds that overlaps are significant, and the distributions introduced reveal universal features of networks.
Abstract: A network is a network — be it between words (those associated with ‘bright’ in this case) or protein structures. Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of1,2,3,4. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins5,6, industrial sectors7 and groups of people8,9) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties.

5,217 citations