scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Structure and mechanism of DNA topoisomerase II

18 Jan 1996-Nature (Nature Publishing Group)-Vol. 379, Iss: 6562, pp 225-232
TL;DR: The crystal structure of a large fragment of yeast type II DNA topoisomerase reveals a heart-shaped dimeric protein with a large central hole that provides a molecular model of the enzyme as an ATP-modulated clamp with two sets of jaws at opposite ends, connected by multiple joints.
Abstract: The crystal structure of a large fragment of yeast type II DNA topoisomerase reveals a heart-shaped dimeric protein with a large central hole. It provides a molecular model of the enzyme as an ATP-modulated clamp with two sets of jaws at opposite ends, connected by multiple joints. An enzyme with bound DNA can admit a second DNA duplex through one set of jaws, transport it through the cleaved first duplex, and expel it through the other set of jaws.
Citations
More filters
Journal ArticleDOI
TL;DR: Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the typeIIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes.
Abstract: ▪ Abstract DNA topoisomerases solve the topological problems associated with DNA replication, transcription, recombination, and chromatin remodeling by introducing temporary single- or double-strand breaks in the DNA. In addition, these enzymes fine-tune the steady-state level of DNA supercoiling both to facilitate protein interactions with the DNA and to prevent excessive supercoiling that is deleterious. In recent years, the crystal structures of a number of topoisomerase fragments, representing nearly all the known classes of enzymes, have been solved. These structures provide remarkable insights into the mechanisms of these enzymes and complement previous conclusions based on biochemical analyses. Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the type IIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes. The type IB enzymes are structurally distinct from a...

2,513 citations

Journal ArticleDOI
James C. Wang1
TL;DR: In this review, the cellular roles of these enzymes are examined from a molecular point of view.
Abstract: DNA topoisomerases are the magicians of the DNA world — by allowing DNA strands or double helices to pass through each other, they can solve all of the topological problems of DNA in replication, transcription and other cellular transactions. Extensive biochemical and structural studies over the past three decades have provided molecular models of how the various subfamilies of DNA topoisomerase manipulate DNA. In this review, the cellular roles of these enzymes are examined from a molecular point of view.

2,194 citations


Cites background from "Structure and mechanism of DNA topo..."

  • ...Figure 2c depicts a molecular model for the transport of one DNA double helix through another by a type IIA enzym...

    [...]

Journal ArticleDOI
30 Jul 1999-Science
TL;DR: Searching sequences from many genomes revealed 6809 putative protein-protein interactions in Escherichia coli and 45,502 in yeast, and many members of these pairs were confirmed as functionally related; computational filtering further enriches for interactions.
Abstract: A computational method is proposed for inferring protein interactions from genome sequences on the basis of the observation that some pairs of interacting proteins have homologs in another organism fused into a single protein chain. Searching sequences from many genomes revealed 6809 such putative proteinprotein interactions in Escherichia coli and 45,502 in yeast. Many members of these pairs were confirmed as functionally related; computational filtering further enriches for interactions. Some proteins have links to several other proteins; these coupled links appear to represent functional interactions such as complexes or pathways. Experimentally confirmed interacting pairs are documented in a Database of Interacting Proteins.

1,691 citations

Book
15 Aug 2014
TL;DR: The sequence-structure relationships indicate that disorder is an encoded property, and the predictions strongly suggest that proteins in nature are much richer in intrinsic disorder than are those in the Protein Data Bank.
Abstract: Proteins can exist in a trinity of structures: the ordered state, the molten globule, and the random coil. The five following examples suggest that native protein structure can correspond to any of the three states (not just the ordered state) and that protein function can arise from any of the three states and their transitions. (1) In a process that likely mimics infection, fd phage converts from the ordered into the disordered molten globular state. (2) Nucleosome hyperacetylation is crucial to DNA replication and transcription; this chemical modification greatly increases the net negative charge of the nucleosome core particle. We propose that the increased charge imbalance promotes its conversion to a much less rigid form. (3) Clusterin contains an ordered domain and also a native molten globular region. The molten globular domain likely functions as a proteinaceous detergent for cell remodeling and removal of apoptotic debris. (4) In a critical signaling event, a helix in calcineurin becomes bound and surrounded by calmodulin, thereby turning on calcineurin's serine/threonine phosphatase activity. Locating the calcineurin helix within a region of disorder is essential for enabling calmodulin to surround its target upon binding. (5) Calsequestrin regulates calcium levels in the sarcoplasmic reticulum by binding approximately 50 ions/molecule. Disordered polyanion tails at the carboxy terminus bind many of these calcium ions, perhaps without adopting a unique structure. In addition to these examples, we will discuss 16 more proteins with native disorder. These disordered regions include molecular recognition domains, protein folding inhibitors, flexible linkers, entropic springs, entropic clocks, and entropic bristles. Motivated by such examples of intrinsic disorder, we are studying the relationships between amino acid sequence and order/disorder, and from this information we are predicting intrinsic order/disorder from amino acid sequence. The sequence-structure relationships indicate that disorder is an encoded property, and the predictions strongly suggest that proteins in nature are much richer in intrinsic disorder than are those in the Protein Data Bank. Recent predictions on 29 genomes indicate that proteins from eucaryotes apparently have more intrinsic disorder than those from either bacteria or archaea, with typically > 30% of eucaryotic proteins having disordered regions of length > or = 50 consecutive residues.

1,557 citations

Journal ArticleDOI
TL;DR: These studies promise refined targeting of TOP2 as an effective anticancer strategy and the ability to interfere with TOP2 and generate enzyme-mediated DNA damage is an effective strategy for cancer chemotherapy.
Abstract: Recent molecular studies have expanded the biological contexts in which topoisomerase II (TOP2) has crucial functions, including DNA replication, transcription and chromosome segregation. Although the biological functions of TOP2 are important for ensuring genomic integrity, the ability to interfere with TOP2 and generate enzyme-mediated DNA damage is an effective strategy for cancer chemotherapy. The molecular tools that have allowed an understanding of the biological functions of TOP2 are also being applied to understanding the details of drug action. These studies promise refined targeting of TOP2 as an effective anticancer strategy.

1,466 citations

References
More filters
Journal ArticleDOI
TL;DR: The CCP4 (Collaborative Computational Project, number 4) program suite is a collection of programs and associated data and subroutine libraries which can be used for macromolecular structure determination by X-ray crystallography.
Abstract: The CCP4 (Collaborative Computational Project, number 4) program suite is a collection of programs and associated data and subroutine libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims and so there may be more than one program to cover each function. The programs are written mainly in standard Fortran77. They are from a wide variety of sources but are connected by standard data file formats. The package has been ported to all the major platforms under both Unix and VMS. The suite is distributed by anonymous ftp from Daresbury Laboratory and is widely used throughout the world.

17,220 citations

Journal ArticleDOI
TL;DR: The MOLSCRIPT program as discussed by the authors produces plots of protein structures using several different kinds of representations, including simple wire models, ball-and-stick models, CPK models and text labels.
Abstract: The MOLSCRIPT program produces plots of protein structures using several different kinds of representations. Schematic drawings, simple wire models, ball-and-stick models, CPK models and text labels can be mixed freely. The schematic drawings are shaded to improve the illusion of three dimensionality. A number of parameters affecting various aspects of the objects drawn can be changed by the user. The output from the program is in PostScript format.

13,971 citations

Journal ArticleDOI
01 Dec 1991-Proteins
TL;DR: It is demonstrated in this work that the surface tension, water‐organic solvent, transfer‐free energies and the thermodynamics of melting of linear alkanes provide fundamental insights into the nonpolar driving forces for protein folding and protein binding reactions.
Abstract: We demonstrate in this work that the surface tension, water-organic solvent, transfer-free energies and the thermodynamics of melting of linear alkanes provide fundamental insights into the nonpolar driving forces for protein folding and protein binding reactions. We first develop a model for the curvature dependence of the hydrophobic effect and find that the macroscopic concept of interfacial free energy is applicable at the molecular level. Application of a well-known relationship involving surface tension and adhesion energies reveals that dispersion forces play little or no net role in hydrophobic interactions; rather, the standard model of disruption of water structure (entropically driven at 25 degrees C) is correct. The hydrophobic interaction is found, in agreement with the classical picture, to provide a major driving force for protein folding. Analysis of the melting behavior of hydrocarbons reveals that close packing of the protein interior makes only a small free energy contribution to folding because the enthalpic gain resulting from increased dispersion interactions (relative to the liquid) is countered by the freezing of side chain motion. The identical effect should occur in association reactions, which may provide an enormous simplification in the evaluation of binding energies. Protein binding reactions, even between nearly planar or concave/convex interfaces, are found to have effective hydrophobicities considerably smaller than the prediction based on macroscopic surface tension. This is due to the formation of a concave collar region that usually accompanies complex formation. This effect may preclude the formation of complexes between convex surfaces.

5,295 citations

Journal ArticleDOI
30 Jan 1992-Nature
TL;DR: In this article, a statistical quantity (RfreeT) is defined to measure the agreement between observed and computed structure factor amplitudes for a 'test' set of reflections that is omitted in the modelling and refinement process.
Abstract: THE determination of macromolecular structure by crystallography involves fitting atomic models to the observed diffraction data1. The traditional measure of the quality of this fit, and presumably the accuracy of the model, is theR value. Despite stereochemical restraints2, it is possible to overfit or 'misfit' the diffraction data: an incorrect model can be refined to fairly good R values as several recent examples have shown3. Here I propose a reliable and unbiased indicator of the accuracy of such models. By analogy with the cross-validation method4,5 of testing statistical models I define a statistical quantity (RfreeT) that measures the agreement between observed and computed structure factor amplitudes for a 'test' set of reflections that is omitted in the modelling and refinement process. As examples show, there is a high correlation between RfreeT and the accuracy of the atomic model phases. This is useful because experimental phase information is usually inaccurate, incomplete or unavailable. I expect that RfreeT will provide a measure of the information content of recently proposed models of thermal motion and disorder6–8, time-averaging9 and bulk solvent10.

3,714 citations

Book
01 Jan 1992
TL;DR: This manual to X-PLOR Version 3.1 presents the theoretical background, syntax and function of the programme and also provides a comprehensive list of references and sample input files with comments.
Abstract: X-PLOR is a highly sophisticated computer program that provides an interface between theoretical foundations and experimental data in structural biology, with specific emphasis on X-ray crystallography and nuclear magnetic resonance spectroscopy in solution of large biological macro-molecules. This manual to X-PLOR Version 3.1 presents the theoretical background, syntax, and function of the program and also provides a comprehensive list of references and sample input files with comments. It is intended primarily for researchers and students in the fields of computational chemistry, structural biology, and computational molecular biology.

3,449 citations