scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Structure modulation of g-C3N4 in TiO2{001}/g-C3N4 hetero-structures for boosting photocatalytic hydrogen evolution

17 Nov 2021-RSC Advances (Royal Society of Chemistry (RSC))-Vol. 11, Iss: 59, pp 37089-37102
TL;DR: In this article, the structure design of photocatalysts is highly desirable for taking full advantage of their abilities for H2 evolution, and the highly efficient TiO2{001}/g-C3N4 (TCN) heterostructures have been fabricated successfully via an in situ ethanol-thermal method.
Abstract: Structure design of photocatalysts is highly desirable for taking full advantage of their abilities for H2 evolution. Herein, the highly-efficient TiO2{001}/g-C3N4 (TCN) heterostructures have been fabricated successfully via an in situ ethanol-thermal method. And the structure of g-C3N4 in the TCN heterostructures could be exfoliated from bulk g-C3N4 to nanosheets, nanocrystals and quantum dots with the increase of the synthetic temperature. Through detailed characterization, the structural evolution of g-C3N4 could be attributed to the enhanced temperature of the ethanol-thermal treatment with the shear effects of HF acid. As expected, the optimal TCN-2 heterostructure shows excellent photocatalytic H2 evolution efficiency (1.78 mmol h−1 g−1) under visible-light irradiation. Except for the formed built-in electric field, the significantly enhanced photocatalytic activity of TCN-2 could be ascribed to the enhanced crystallinity of TiO2{001} nanosheets and the formed g-C3N4 nanocrystals with large surface area, which could extend the visible light absorption, and expedite the transfer of photo-generated charge carriers further. Our work could provide guidance on designing TCN heterostructures with the desired structure for highly-efficient photocatalytic water splitting.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the metal-free chlorine-sulphur double-doped graphitic carbon nitride (Cl/S-g-C3N4) photocatalyst was incorporated into polyacrylonitrile (PAN) nanofibrous membrane via an electrospun method.

4 citations

Journal ArticleDOI
TL;DR: In this article , a hitting three birds with one stone strategy was reported to prepared boron-doped g-C3N4/TiO2-x composite (BCT) by a one-step thermal reduction process.

2 citations

Journal ArticleDOI
TL;DR: In this paper , a novel ternary composite photocatalyst of graphitic carbon nitride (g-C3N4)/TiO2 mesocrystals (TMCs)/graphene oxide (GO) with step-scheme heterojunction structure was prepared by solvent evaporation method.

2 citations

Journal ArticleDOI
TL;DR: In this paper , a simple solvothermal method was used to grow 2D (0 0 1)-facetsexposed titanium dioxide ((0 0 2)-TiO2) nanosheets in situ on the surface of 2D polymeric carbon nitride (PCN) nanOSheets to obtain PCN/(0 2 1)- TiO2 heterojunction for the photodegradation of norfloxacin.

1 citations

References
More filters
Journal ArticleDOI
Ryoji Asahi1, Takeshi Morikawa1, T. Ohwaki1, Koyu Aoki1, Y. Taga1 
13 Jul 2001-Science
TL;DR: Film and powders of TiO2-x Nx have revealed an improvement over titanium dioxide (TiO2) under visible light in optical absorption and photocatalytic activity such as photodegradations of methylene blue and gaseous acetaldehyde and hydrophilicity of the film surface.
Abstract: To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Films and powders of TiO 2- x N x have revealed an improvement over titanium dioxide (TiO 2 ) under visible light (wavelength 2 has proven to be indispensable for band-gap narrowing and photocatalytic activity, as assessed by first-principles calculations and x-ray photoemission spectroscopy.

11,402 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the Na2O/Na2O 2 mixture at the stationary phase and shows clear patterns in the response of these two materials to each other.
Abstract: Jenny Schneider,*,† Masaya Matsuoka,‡ Masato Takeuchi,‡ Jinlong Zhang, Yu Horiuchi,‡ Masakazu Anpo,‡ and Detlef W. Bahnemann*,† †Institut fur Technische Chemie, Leibniz Universitaẗ Hannover, Callinstrasse 3, D-30167 Hannover, Germany ‡Faculty of Engineering, Osaka Prefecture University, 1 Gakuen-cho, Sakai Osaka 599-8531, Japan Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China

4,353 citations

Journal ArticleDOI
29 May 2008-Nature
TL;DR: This work synthesized uniform anatase TiO2 single crystals with a high percentage (47 per cent) of {001} facets using hydrofluoric acid as a morphology controlling agent and demonstrates that for fluorine-terminated surfaces this relative stability is reversed.
Abstract: [Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang; Liu, Gang; Smith, Sean Campbell; Lu, Gao Qing] Univ Queensland, ARC Ctr Excellence Funct Nanomat, Sch Engn, Brisbane, Qld 4072, Australia. [Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang; Liu, Gang; Smith, Sean Campbell; Lu, Gao Qing] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia. [Zou, Jin] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Zou, Jin] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. [Liu, Gang; Cheng, Hui Ming] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat sci, Shenyang 110016, Peoples R China.;Lu, GQ (reprint author), Univ Queensland, ARC Ctr Excellence Funct Nanomat, Sch Engn, Brisbane, Qld 4072, Australia;s.qiao@uq.edu.au maxlu@uq.edu.au

3,656 citations

Journal ArticleDOI
Hao Zhang1, Xiao-Jun Lv1, Yueming Li1, Ying Wang1, Jinghong Li1 
26 Jan 2010-ACS Nano
TL;DR: A chemically bonded TiO(2) (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method could provide new insights into the fabrication of a TiO (2)-carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.
Abstract: Herein we obtained a chemically bonded TiO2 (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method. During the hydrothermal reaction, both of the reduction of graphene oxide and loading of P25 were achieved. The as-prepared P25-graphene photocatalyst possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously, which was rarely reported in other TiO2−carbon photocatalysts. Hence, in the photodegradation of methylene blue, a significant enhancement in the reaction rate was observed with P25-graphene, compared to the bare P25 and P25-CNTs with the same carbon content. Overall, this work could provide new insights into the fabrication of a TiO2−carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.

2,944 citations