scispace - formally typeset
Search or ask a question
Book ChapterDOI

Structure of serum albumin.

01 Jan 1994-Advances in Protein Chemistry (Adv Protein Chem)-Vol. 45, pp 153-203
TL;DR: This chapter provides an insight of the findings of past significant papers with the current knowledge of the recently determined high resolution X-ray structure of serum albumin and suggests that AFP may have a higher affinity for some unknown ligands important for fetal development.
Abstract: Publisher Summary This chapter provides an insight of the findings of past significant papers with the current knowledge of the recently determined high resolution X-ray structure of serum albumin. The most outstanding property of albumin is its ability to bind reversibly an incredible variety of ligands. The sequences of all albumins are characterized by a unique arrangement of disulfide double loops that repeat as a series of triplets. Albumin belongs to a multigene family of proteins that includes α- fetoprotein (AFP) and vitamin D-binding protein (VDP), also known as G complement (Gc) protein. Although AFP is considered the fetal counterpart of albumin, its binding properties are distinct and it is suggested that AFP may have a higher affinity for some unknown ligands important for fetal development. Domain structure and the arrangement of the disulfides, the surface charge distribution, and the conformational flexibility of the albumin molecule are described. The nature of ligand binding, including small organics, long-chain fatty acids, and metals, to multiple sites on the albumin molecule is clearly depicted. The chapter concludes with the perceptive comments on future directions being taken to explore the structure and function of this fascinating protein.
Citations
More filters
Journal ArticleDOI
TL;DR: This review gives an account of the different drug delivery systems which make use of albumin as a drug carrier with a focus on those systems that have reached an advanced stage of preclinical evaluation or that have entered clinical trials.

1,913 citations


Cites background or methods from "Structure of serum albumin."

  • ...X-ray structure of human serum albumin (pdb-entry 1bj5) [3]....

    [...]

  • ...The three-dimensional structure of HSA has been elucidated by X-ray structure analysis [2,3]....

    [...]

  • ...The cysteine-34 position of albumin that is located in subdomain IA of albumin is highly conserved in all mammalian species studied with the exception of salmon albumin [1,3]....

    [...]

Journal ArticleDOI
TL;DR: A new triclinic crystal form of human serum albumin (HSA), derived either from pool plasma or from a Pichia pastoris expression system, was obtained from polyethylene glycol 4000 solution, and three-dimensional structures of pHSA and rHSA were determined.
Abstract: A new triclinic crystal form of human serum albumin (HSA), derived either from pool plasma (pHSA) or from a Pichia pastoris expression system (rHSA), was obtained from polyethylene glycol 4000 solution. Three-dimensional structures of pHSA and rHSA were determined at 2.5 A resolution from the new triclinic crystal form by molecular replacement, using atomic coordinates derived from a multiple isomorphous replacement work with a known tetragonal crystal form. The structures of pHSA and rHSA are virtually identical, with an r.m. s. deviation of 0.24 A for all Calpha atoms. The two HSA molecules involved in the asymmetric unit are related by a strict local twofold symmetry such that the Calpha atoms of the two molecules can be superimposed with an r.m.s. deviation of 0.28 A in pHSA. Cys34 is the only cysteine with a free sulfhydryl group which does not participate in a disulfide linkage with any external ligand. Domains II and III both have a pocket formed mostly of hydrophobic and positively charged residues and in which a very wide range of compounds may be accommodated. Three tentative binding sites for long-chain fatty acids, each with different surroundings, are located at the surface of each domain.

1,632 citations

Journal ArticleDOI
TL;DR: It is found that solvent properties of water within the interphase separating a solid surface from bulk water solution vary with contacting surface chemistry, and this interphase can extend tens of nanometers from a water-contacting surface due to a propagation of differences in self association between vicinal water and bulk-phase water.

1,396 citations

Journal ArticleDOI
TL;DR: The crystal structure of HSA complexed with five molecules of myristate at 2.5 Å resolution is determined and it is shown that fatty acid molecules bind in long, hydrophobic pockets capped by polar side chains, many of which are basic.
Abstract: Human serum albumin (HSA) is the most abundant protein in the circulatory system. Its principal function is to transport fatty acids, but it is also capable of binding a great variety of metabolites and drugs. Despite intensive efforts, the detailed structural basis of fatty acid binding to HSA has remained elusive. We have now determined the crystal structure of HSA complexed with five molecules of myristate at 2.5 A resolution. The fatty acid molecules bind in long, hydrophobic pockets capped by polar side chains, many of which are basic. These pockets are distributed asymmetrically throughout the HSA molecule, despite its symmetrical repeating domain structure.

1,291 citations

Journal ArticleDOI
TL;DR: HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control.

1,257 citations

References
More filters
Journal ArticleDOI
TL;DR: The number and variety of known compounrjs between proteins and small molecules are increasing rapidly and make a fascinating story as discussed by the authors, and there are many compounds of serum albumin, which was used during the war by many chemists, most of whom found at least one 6ew compound.
Abstract: The number and variety of known compounrjs between proteins and small molecules are increasing rapidly and make a fascinating story. For instance, there are the compounds of iron, which is carried in our blood plasma by a globulin, two atoms of iron to each molecule of globulin held in a rather tight salt-lie binding? which is stored as ferric hydroxide by ferritin much as water is held by a sponge? and which functions in hemoglobin, four iron atoms in tight porphyrin complexes in each protein molecule. Or, there are many compounds of serum albumin, which was used during the war by many chemists, most of whom found at least one 6ew compound. This molecule, which has about a hundred carboxyl radicals, each of which can take on a proton, and about the same number of ammonium radicals, each of which can dissociate a proton, has one single radical which combines with mercuric ion so firmly that two albumin molecules will share one mercury atom if there are not enough to go a r ~ u n d . ~ At the present stage of rapid growth of known compounds, it seems more profitable for me to make no attempt to catalogue the various classes of compounds, but to discuss the general principles involved, in the hope that this will make more useful the information which is accumulating so rapidy from so many laboratories. We want to know of each molecule or ion whicb can combine with a protein molecule, /‘How many? How tightly? Where? Why?” The answer to the first two questions, and sometimes to the third, can be furnished by the physical chemist, but he will often need to team with an organic chemist to determine the effect of altering specified groups to find if they are reactive. The determination of function iç a complicated problem which may be the business of the physiologist or physiological chemist. But the answers to both of the more complicated problems will depend on the answers to the simpler questions, “HOW many?” and “How tightly bound?” If the various groups on a protein molecule act independently, we can apply the law of mass action as though each group were on a separate molecule,4 and the strength of binding can be expressed as the constant for each group. Often, a single constant will express the behavior of severa1 groups. If the constants are widely spread, as those for the reaction of hydrogen ion with carboxylate ions, with imidazoles and with amines, the interpretation is simple. If the separation is less, it is very difficult to distinguish the case of different intrinsic affinities from the case of interaction among the groups. We know that such interaction occurs in simple moleculeç in which a reac-

20,127 citations

Journal ArticleDOI
16 Jul 1992-Nature
TL;DR: The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 Å and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serumalbumin.
Abstract: The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and IIIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.

3,482 citations

Journal ArticleDOI
18 Dec 1992-Science
TL;DR: The integration of this chemistry with current perspectives of NO biology illuminates many aspects of NO biochemistry, including the enzymatic mechanism of synthesis, the mode of transport and targeting in biological systems, the means by which its toxicity is mitigated, and the function-regulating interaction with target proteins.
Abstract: Nitric oxide (NO.), a potentially toxic molecule, has been implicated in a wide range of biological functions. Details of its biochemistry, however, remain poorly understood. The broader chemistry of nitrogen monoxide (NO) involves a redox array of species with distinctive properties and reactivities: NO+ (nitrosonium), NO., and NO- (nitroxyl anion). The integration of this chemistry with current perspectives of NO biology illuminates many aspects of NO biochemistry, including the enzymatic mechanism of synthesis, the mode of transport and targeting in biological systems, the means by which its toxicity is mitigated, and the function-regulating interaction with target proteins.

2,713 citations