scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Study of a thermoelectric space cooling system integrated with phase change material

05 Jul 2015-Applied Thermal Engineering (Pergamon)-Vol. 86, pp 187-198
TL;DR: In this paper, a thermoelectric cooling system integrated with phase change material (PCM) has been proposed for space cooling purpose, in which PCM stores cold thermal energy at night and functions as a heat sink to reduce hot side temperature during daytime cooling period and thus improve the performance efficiency of the system.
About: This article is published in Applied Thermal Engineering.The article was published on 2015-07-05. It has received 81 citations till now. The article focuses on the topics: Thermoelectric cooling & Water cooling.
Citations
More filters
Journal Article•DOI•
TL;DR: In this article, the authors present an overview of different phase change materials (PCM) applications in buildings for reducing cooling loads under different climate conditions, and the factors affecting the successful and the effective use of the PCM.

529 citations

Journal Article•DOI•
TL;DR: In this paper, phase change materials (PCMs) can be applied to several different solar energy systems for the extended heat energy storage which is quite useful as the solar energy is intermittent in nature and is unavailable during the night period.
Abstract: Phase change materials (PCMs) can be applied to several different solar energy systems for the extended heat energy storage which is quite useful as the solar energy is intermittent in nature and is unavailable during the night period Application of PCMs in solar energy systems allows the solar energy to be used at any time even in the absence of the natural solar radiation Thus, the use of PCMs in the solar energy systems can bridge the demand and supply gap of the normal electrical energy This paper deals with the recent advances in PCMs application in different solar energy systems and presents almost all of the emerging areas where the applications of PCM in solar energy systems are urgently required The novel and most recent developments of PCMs in solar thermal energy systems, such as, solar thermal power plants, solar air heater, solar water heater and solar cooker have been duly covered Furthermore, the application of PCMs in heating and cooling of buildings have been presented as well as the investigation of the PCM application in the solar photovoltaic systems for the performance enhancement of PCMs Intrinsically important, from the study it has been found that PCMs have been in use in almost all of the solar energy systems even though their uses are still limited and commercially not available due to several economic and environmental constraints Thus, the paper attempts to present recent and novel approaches by the authors around the world on PCMs applications in the solar energy in well documented forms Based on the findings, future recommendations have also been given to provide the idea and pragmatic concepts for the researcher to work on the areas of research for further improvements in the systems

290 citations

Journal Article•DOI•
TL;DR: In this paper, a theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based photovoltaic/thermal (PV/T) absorber is proposed and evaluated.

141 citations

Journal Article•DOI•
TL;DR: In this article, phase change material (PCM) absorbs heat during its melting, thus stabilizing temperature of the cool side of TEG, and the results confirmed the potential of the application of phase change materials as a cooling/heating media in TEGs.

122 citations

Journal Article•DOI•
TL;DR: In this article, a portable thermoelectric energy conversion unit (TECU) that converts electricity into cooling and heating energy is developed to regulate the thermal comfort of a human body.

93 citations

References
More filters
Book•
11 Sep 1985
TL;DR: This paper introduced the physical effects underlying heat and mass transfer phenomena and developed methodologies for solving a variety of real-world problems, such as energy minimization, mass transfer, and energy maximization.
Abstract: This undergraduate-level engineering text introduces the physical effects underlying heat and mass transfer phenomena and develops methodologies for solving a variety of real-world problems.

13,209 citations

Book•
01 Jan 2008

11,281 citations

Journal Article•DOI•
Robert J. Moffat1•
TL;DR: The material presented in this paper covers the method of describing the uncertainties in an engineering experiment and the necessary background material, as well as a technique for numerically executing uncertainty analyses when computerized data interpretation is involved.

6,868 citations

Journal Article•DOI•
TL;DR: Despite recent advances, thermoelectric energy conversion will never be as efficient as steam engines, which meansThermoelectrics will remain limited to applications served poorly or not at all by existing technology.
Abstract: Despite recent advances, thermoelectric energy conversion will never be as efficient as steam engines. That means thermoelectrics will remain limited to applications served poorly or not at all by existing technology. Bad news for thermoelectricians, but the climate crisis requires that we face bad news head on.

799 citations

Book•
01 Jan 1977
TL;DR: In this article, the authors present a detailed discussion of common HVAC units and their dimensions, as well as the basic concerns of IAQ, such as comfort, health, and environment.
Abstract: Preface About the Authors Symbols 1. Introduction 1-1 Historical Notes 1-2 Common HVAC Units and Dimensions 1-3 Fundamental Physical Concepts 1-4 Additional Comments References Problems 2. Air-Conditioning Systems 2-1 The Complete System 2-2 System Selection and Arrangement 2-3 HVAC Components and Distribution Systems 2-4 Types of All-Air Systems 2-5 Air-and-Water Systems 2-6 All-Water Systems 2-7 Decentralized Cooling and Heating 2-8 Heat Pump Systems 2-9 Heat Recovery Systems 2-10 Thermal Energy Storage References Problems 3. Moist Air Properties and Conditioning Processes 3-1 Moist Air and the Standard Atmosphere 3-2 Fundamental Parameters 3-3 Adiabatic Saturation 3-4 Wet Bulb Temperature and the Psychrometric Chart 3-5 Classic Moist Air Processes 3-6 Space Air Conditioning Design Conditions 3-7 Space Air Conditioning Off-Design Conditions References Problems 4. Comfort and Health Indoor Environmental Quality 4-1 Comfort Physiological Considerations 4-2 Environmental Comfort Indices 4-3 Comfort Conditions 4-4 The Basic Concerns of IAQ 4-5 Common Contaminants 4-6 Methods to Control Humidity 4-7 Methods to Control Contaminants References Problems 5. Heat Transmission in Building Structures 5-1 Basic Heat-Transfer Modes 5-2 Tabulated Overall Heat-Transfer Coefficients 5-3 Moisture Transmission References Problems 6. Space Heating Load 6-1 Outdoor Design Conditions 6-2 Indoor Design Conditions 6-3 Transmission Heat Losses 6-4 Infiltration 6-5 Heat Losses from Air Ducts 6-6 Auxiliary Heat Sources 6-7 Intermittently Heated Structures 6-8 Supply Air For Space Heating 6-9 Source Media for Space Heating 6-10 Computer Calculation of Heating Loads References Problems 7. Solar Radiation 7-1 Thermal Radiation 7-2 The Earth's Motion About the Sun 7-3 Time 7-4 Solar Angles 7-5 Solar Irradiation 7-6 Heat Gain Through Fenestrations 7-7 Energy Calculations References Problems 8. The Cooling Load 8-1 Heat Gain, Cooling Load, and Heat Extraction Rate 8-2 Application of Cooling Load Calculation Procedures 8-3 Design Conditions 8-4 Internal Heat Gains 8-5 Overview of the Heat Balance Method 8-6 Transient Conduction Heat Transfer 8-7 Outside Surface Heat Balance Opaque Surfaces 8-8 Fenestration Transmitted Solar Radiation 8-9 Interior Surface Heat Balance Opaque Surfaces 8-10 Surface Heat Balance Transparent Surfaces 8-11 Zone Air Heat Balance 8-12 Implementation of the Heat Balance Method 8-13 Radiant Time Series Method 8-14 Implementation of the Radiant Time Series Method 8-15 Supply Air Quantities References Problems 9. Energy Calculations and Building Simulation 9-1 Degree-Day Procedure 9-2 Bin Method 9-3 Comprehensive Simulation Methods 9-4 Energy Calculation Tools 9-5 Other Aspects of Building Simulation References Problems 10. Flow, Pumps, and Piping Design 10-1 Fluid Flow Basics 10-2 Centrifugal Pumps 10-3 Combined System and Pump Characteristics 10-4 Piping System Fundamentals 10-5 System Design 10-6 Steam Heating Systems References Problems 11. Space Air Diffusion 11-1 Behavior of Jets 11-2 Air-Distribution System Design References Problems 12. Fans and Building Air Distribution 12-1 Fans 12-2 Fan Relations 12-3 Fan Performance and Selection 12-4 Fan Installation 12-5 Field Performance Testing 12-6 Fans and Variable-Air-Volume Systems 12-7 Air Flow in Ducts 12-8 Air Flow in Fittings 12-9 Accessories 12-10 Duct Design General 12-11 Duct Design Sizing References Problems 13. Direct Contact Heat and Mass Transfer 13-1 Combined Heat and Mass Transfer 13-2 Spray Chambers 13-3 Cooling Towers References Problems 14. Extended Surface Heat Exchangers 14-1 The Log Mean Temperature Deficiency (LMTD) Method 14-2 The Number of Transfer Units (NTU) Method 14-3 Heat Transfer-Single-Component Fluids 14-4 Transport Coefficients Inside Tubes 14-5 Transport Coefficients Outside Tubes and Compact Surfaces 14-6 Design Procedures for Sensible Heat Transfer 14-7 Combined Heat and Mass Transfer References Problems 15. Refrigeration 15-1 The Performance of Refrigeration Systems 15-2 The Theoretical Single-Stage Compression Cycle 15-3 Refrigerants 15-4 Refrigeration Equipment Components 15-5 The Real Single-Stage Cycle 15-6 Absorption Refrigeration 15-7 The Theoretical Absorption Refrigeration System 15-8 The Aqua-Ammonia Absorption System 15-9 The Lithium Bromide-Water System References Problems Appendix A. Thermophysical Properties Table A-1a. Properties of Refrigerant 718 (Water-Steam) English Units Table A-1b. Properties of Refrigerant 718 (Water-Steam) SI Units Table A-2a. Properties of Refrigerant 134a (1,1,1,2-Tetrafluoroethane) English Units Table A-2b. Properties of Refrigerant 134a (1,1,1,2-Tetrafluoroethane) SI Units Table A-3a. Properties of Refrigerant 22 (Chlorodifluoromethane) English Units Table A-3b. Properties of Refrigerant 22 (Chlorodifluoromethane) SI Units Table A-4a. Air English Units Table A-4b. Air SI Units Appendix B. Weather Data Table B-1a. Heating and Cooling Design Conditions United States, Canada, and the World English Units Table B-1b. Heating and Cooling Design Conditions United States, Canada, and the World SI Units Table B-2. Annual BinWeather Data for Oklahoma City,OK Table B-3. Annual Bin Weather Data for Chicago, IL Table B-4. Annual Bin Weather Data for Denver, CO Table B-5. Annual Bin Weather Data for Washington, DC Appendix C. Pipe and Tube Data Table C-1. Steel Pipe Dimensions English and SI Units Table C-2. Type L Copper Tube Dimensions English and SI Units Appendix D. Useful Data Table D-1. Conversion Factors Appendix E: Charts Chart 1a. ASHRAE Psychrometric Chart No. 1 (IP) (Reprinted by permission of ASHRAE.) Chart 1b. ASHRAE Psychrometric Chart No. 1 (SI) (Reprinted by permission of ASHRAE.) Chart 1Ha. ASHRAE Psychrometric Chart No. 4 (IP) (Reprinted by permission of ASHRAE.) Chart 1Hb. ASHRAE Psychrometric Chart No. 6 (SI) (Reprinted by permission of ASHRAE.) Chart 2. Enthalpy-concentration diagram for ammonia-water solutions (From Unit Operations by G. G. Brown, Copyright (c)1951 by John Wiley & Sons, Inc.) Chart 3. Pressure-enthalpy diagram for refrigerant 134a (Reprinted by permission.) Chart 4. Pressure-enthalpy diagram for refrigerant 22 (Reprinted by permission.) Chart 5. Enthalpy-concentration diagram for Lithium Bromide-water solutions (Courtesy of Institute of Gas Technology, Chicago IL.) Index

712 citations