scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Study of electrical performance and stability of solution-processed n-channel organic field-effect transistors

02 Sep 2009-Journal of Applied Physics (American Institute of Physics)-Vol. 106, Iss: 5, pp 054504
TL;DR: In this paper, a solution processed n-channel organic field effect transistors based on [6,6]-phenyl C61 butyric acid methyl ester with high mobility and low contact resistance are reported.
Abstract: Solution processed n-channel organic field-effect transistors based on [6,6]-phenyl C61 butyric acid methyl ester with high mobility and low contact resistance are reported. Ca, Au, or Ca capped with Au (Ca/Au) was used as the top source/drain electrodes. The devices with Ca electrodes exhibit excellent n-channel behavior with electron mobility values of 0.12 cm2/V s, low threshold voltages (∼2.2 V), high current on/off ratios (105–106) and subthreshold slopes of 0.7 V/decade. By varying the channel lengths (25–200 μm) in devices with different metal/semiconductor interfaces, the effect of channel length scaling on mobility is studied and the contact resistance is extracted. The width-normalized contact resistance (RCW) for Au (12 kΩ cm) is high in comparison to Ca (7.2 kΩ cm) or Ca/Au (7.5 kΩ cm) electrodes at low gate voltage (VGS=10 V). However, in the strong accumulation regime at high gate voltage (VGS=30 V), its value is nearly independent of the choice of metal electrodes and in a range of 2.2–2.6 kΩ cm. These devices show stable electrical behavior under multiple scans and low threshold voltage instability under electrical bias stress (VDS=VGS=30 V, 1 h) in N2 atmosphere.
Citations
More filters
Journal ArticleDOI
TL;DR: Recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon.
Abstract: For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge transport properties. Among this class of materials, various polymers can show well balanced electrons and holes mobility, therefore being indicated as ambipolar semiconductors, good environmental stability, and a small band-gap, which simplifies the tuning of charge injection. This opened up the possibility of taking advantage of the superior performances offered by complementary "CMOS-like" logic for the design of digital ICs, easing the scaling down of critical geometrical features, and achieving higher complexity from robust single gates (e.g., inverters) and test circuits (e.g., ring oscillators) to more complete circuits. Here, we review the recent progress in the development of printed ICs based on polymeric semiconductors suitable for large-volume micro- and nano-electronics applications. Particular attention is paid to the strategies proposed in the literature to design and synthesize high mobility polymers and to develop suitable printing tools and techniques to allow for improved patterning capability required for the down-scaling of devices in order to achieve the operation frequencies needed for applications, such as flexible radio-frequency identification (RFID) tags, near-field communication (NFC) devices, ambient electronics, and portable flexible displays.

476 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on the subject of current injection in organic thin film transistors is offered: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices.
Abstract: A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits.

386 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a deep insight into different organic/inorganic materials used for the dielectric layer, electrodes and substrate for thin film transistors (TFTs).
Abstract: This paper reviews recent advancements in the field of organic electronics. Performance of p- and n-type conducting polymers and small molecule organic semiconductors is presented primarily in terms of mobility and current on/off ratio. Moreover, it presents a deep insight into different organic/inorganic materials used for the dielectric layer, electrodes and substrate for thin film transistors (TFTs). The electrical characteristics and performance parameters of single and dual gate structures are compared. In addition, performance dependence of organic TFT (OTFT) is discussed on the basis of contact resistance, channel length and thickness of the active layer. The paper thoroughly discusses several important applications of OTFTs including inverter, organic static random access memory, radio frequency identification tag and DNA sensors. It also includes several limitations and future prospects of organic electronics technology.

125 citations

Journal ArticleDOI
TL;DR: In this article, 2,2′-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienymylldiketsopyrylopyrdrug-biomethane)-bithiaide, PDBTz, which exhibited electron mobility reaching 0.3 cm2 V 1 s−1 in organic field effect transistor (OFET) configuration.
Abstract: The electron deficiency and trans-planar conformation of bithiazole is potentially beneficial for the electron-transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2′-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2 V–1 s–1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron-rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole-transport characteristics. This inversion of charge-carrier transport characteristics confirms the significant potential for bithiazole in the development of electron-transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polyme...

79 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate efficient electron injection from a high work function metal in staggered transistors based on the high mobility poly{[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis (dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)}.
Abstract: We demonstrate efficient electron injection from a high work function metal in staggered transistors based on the high mobility poly{[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)}. Channel length scaling shows that the linear mobility for electrons remains higher than 0.1 cm2/V s when reducing the channel length to a few micrometers. Field-enhanced injection favors downscaling at a fixed lateral voltage and reduces the contact resistance to 11 kΩ cm at high gate voltages for channels of only a few micrometers. The contacts are asymmetric, with the source contribution dominating the overall resistance, consistent with an injection limited regime rather than bulk-limited as generally found in staggered transistors.

72 citations

References
More filters
Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: A highly soluble and printable n-channel polymer exhibiting unprecedented OTFT characteristics under ambient conditions in combination with Au contacts and various polymeric dielectrics is reported and all-printed polymeric complementary inverters have been demonstrated.
Abstract: Printed electronics is a revolutionary technology aimed at unconventional electronic device manufacture on plastic foils, and will probably rely on polymeric semiconductors for organic thin-film transistor (OTFT) fabrication. In addition to having excellent charge-transport characteristics in ambient conditions, such materials must meet other key requirements, such as chemical stability, large solubility in common solvents, and inexpensive solution and/or low-temperature processing. Furthermore, compatibility of both p-channel (hole-transporting) and n-channel (electron-transporting) semiconductors with a single combination of gate dielectric and contact materials is highly desirable to enable powerful complementary circuit technologies, where p- and n-channel OTFTs operate in concert. Polymeric complementary circuits operating in ambient conditions are currently difficult to realize: although excellent p-channel polymers are widely available, the achievement of high-performance n-channel polymers is more challenging. Here we report a highly soluble ( approximately 60 g l(-1)) and printable n-channel polymer exhibiting unprecedented OTFT characteristics (electron mobilities up to approximately 0.45-0.85 cm(2) V(-1) s(-1)) under ambient conditions in combination with Au contacts and various polymeric dielectrics. Several top-gate OTFTs on plastic substrates were fabricated with the semiconductor-dielectric layers deposited by spin-coating as well as by gravure, flexographic and inkjet printing, demonstrating great processing versatility. Finally, all-printed polymeric complementary inverters (with gain 25-65) have been demonstrated.

2,769 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of organic field effect transistors (OFETs) is examined in terms of field effect mobility and on-off current ratio, and the most prominent fabrication techniques are described.
Abstract: Organic field-effect transistors (OFETs) were first described in 1987. Their characteristics have undergone spectacular improvements during the last two or three years. At the same time, several models have been developed to rationalize their operating mode. In this review, we examine the performance of OFETs as revealed by recently published data, mainly in terms of field-effect mobility and on–off current ratio. We compare the various compounds that have been used as the active component, and describe the most prominent fabrication techniques. Finally, we analyze the charge transport mechanisms in organic solids, and the resulting models of OFETs.

2,380 citations

Journal ArticleDOI
10 Mar 2005-Nature
TL;DR: It is demonstrated that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers, revealing that electrons are considerably more mobile in these materials than previously thought.
Abstract: Organic semiconductors have been the subject of active research for over a decade now, with applications emerging in light-emitting displays and printable electronic circuits. One characteristic feature of these materials is the strong trapping of electrons but not holes1: organic field-effect transistors (FETs) typically show p-type, but not n-type, conduction even with the appropriate low-work-function electrodes, except for a few special high-electron-affinity2,3,4 or low-bandgap5 organic semiconductors. Here we demonstrate that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers. The FET electron mobilities thus obtained reveal that electrons are considerably more mobile in these materials than previously thought. Electron mobilities of the order of 10-3 to 10-2 cm2 V-1 s-1 have been measured in a number of polyfluorene copolymers and in a dialkyl-substituted poly(p-phenylenevinylene), all in the unaligned state. We further show that the reason why n-type behaviour has previously been so elusive is the trapping of electrons at the semiconductor–dielectric interface by hydroxyl groups, present in the form of silanols in the case of the commonly used SiO2 dielectric. These findings should therefore open up new opportunities for organic complementary metal-oxide semiconductor (CMOS) circuits, in which both p-type and n-type behaviours are harnessed.

2,191 citations

Journal ArticleDOI
TL;DR: New semiconducting liquid-crystalline thieno[3,2-b ]thiophene polymers are reported on, the enhancement in charge-carrier mobility achieved through highly organized morphology from processing in the mesophase, and the effects of exposure to both ambient and low-humidity air on the performance of transistor devices.
Abstract: Organic semiconductors that can be fabricated by simple processing techniques and possess excellent electrical performance, are key requirements in the progress of organic electronics. Both high semiconductor charge-carrier mobility, optimized through understanding and control of the semiconductor microstructure, and stability of the semiconductor to ambient electrochemical oxidative processes are required. We report on new semiconducting liquid-crystalline thieno[3,2-b ]thiophene polymers, the enhancement in charge-carrier mobility achieved through highly organized morphology from processing in the mesophase, and the effects of exposure to both ambient and low-humidity air on the performance of transistor devices. Relatively large crystalline domain sizes on the length scale of lithographically accessible channel lengths (∼200 nm) were exhibited in thin films, thus offering the potential for fabrication of single-crystal polymer transistors. Good transistor stability under static storage and operation in a low-humidity air environment was demonstrated, with charge-carrier field-effect mobilities of 0.2–0.6 cm2 V−1 s−1 achieved under nitrogen.

2,011 citations

Journal ArticleDOI
16 Jul 1998-Nature
TL;DR: In this article, an electrophoretic ink based on the microencapsulation of an electrophic dispersion was used to solve the lifetime issues and allow the fabrication of a bistable electronic display solely by means of printing.
Abstract: It has for many years been an ambition of researchers in display media to create a flexible low-cost system that is the electronic analogue of paper. In this context, microparticle-based displays1,2,3,4,5 have long intrigued researchers. Switchable contrast in such displays is achieved by the electromigration of highly scattering or absorbing microparticles (in the size range 0.1–5 μm), quite distinct from the molecular-scale properties that govern the behaviour of the more familiar liquid-crystal displays6. Microparticle-based displays possess intrinsic bistability, exhibit extremely low power d.c. field addressing and have demonstrated high contrast and reflectivity. These features, combined with a near-lambertian viewing characteristic, result in an ‘ink on paper’ look7. But such displays have to date suffered from short lifetimes and difficulty in manufacture. Here we report the synthesis of an electrophoretic ink based on the microencapsulation of an electrophoretic dispersion8. The use of a microencapsulated electrophoretic medium solves the lifetime issues and permits the fabrication of a bistable electronic display solely by means of printing. This system may satisfy the practical requirements of electronic paper.

1,210 citations