scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sub-Rayleigh-diffraction-bound quantum imaging

28 Jan 2009-Physical Review A (American Physical Society)-Vol. 79, Iss: 1, pp 013827
TL;DR: In this paper, the authors show some $N$-photon strategies that permit resolution of details that are smaller than this bound, attaining either a $1∕\sqrt{N}$ enhancement (standard quantum limit) or a Heisenberg-like scaling over standard techniques.
Abstract: The spatial resolution of an imaging apparatus is limited by the Rayleigh diffraction bound, a consequence of the imager's finite spatial extent. We show some $N$-photon strategies that permit resolution of details that are smaller than this bound, attaining either a $1∕\sqrt{N}$ enhancement (standard quantum limit) or a $1∕N$ enhancement (Heisenberg-like scaling) over standard techniques. In the incoherent imaging regime, the methods presented are loss resistant, since classical light sources suffice. Our results may be of importance in many applications: microscopy, telescopy, lithography, metrology, etc.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that it is always possible to estimate the separation of two stars, no matter how close they are, regardless of how distant they are from each other.
Abstract: Quantum metrology shows that it is always possible to estimate the separation of two stars, no matter how close together they are.

320 citations

Journal ArticleDOI
TL;DR: There are hundreds of papers published in this field, some with hundreds of citations as discussed by the authors, and some possible technical applications and connections to other research areas, such as complementarity relations, Bell's inequality violation and entanglement.

318 citations

Journal ArticleDOI
01 Jun 2019
TL;DR: Using quantum states of light for imaging both reveals quantum phenomena and enables new protocols that result in images that surpass classical limitations as discussed by the authors, such as image contrast, resolution enhancement that exceeds the classical limit and acquisition of sub-shot-noise phase or amplitude images.
Abstract: The production of pairs of entangled photons simply by focusing a laser beam onto a crystal with a nonlinear optical response was used to test quantum mechanics and to open new approaches in imaging. The development of the latter was enabled by the emergence of single-photon-sensitive cameras that are able to characterize spatial correlations and high-dimensional entanglement. Thereby, new techniques emerged, such as ghost imaging of objects — in which the quantum correlations between photons reveal the image from photons that have never interacted with the object — or imaging with undetected photons by using nonlinear interferometers. In addition, quantum approaches in imaging can also lead to an improvement in the performance of conventional imaging systems. These improvements can be obtained by means of image contrast, resolution enhancement that exceeds the classical limit and acquisition of sub-shot-noise phase or amplitude images. In this Review, we discuss the application of quantum states of light for advanced imaging techniques. Using quantum states of light for imaging both reveals quantum phenomena and enables new protocols that result in images that surpass classical limitations. Such systems require both quantum light sources and often the ingenious use of detector technologies.

185 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a few of the most mature quantum imaging protocols ranging from ghost imaging to sub shot noise imaging and sub-Rayleigh imaging, some of them only theoretically, others with an experimental implementation and pointing to a clear application.
Abstract: In previous years the possibility of creating and manipulating quantum states of light has paved the way for the development of new technologies exploiting peculiar properties of quantum states, such as quantum information, quantum metrology and sensing, quantum imaging, etc. In particular quantum imaging addresses the possibility of overcoming limits of classical optics by using quantum resources such as entanglement or sub-Poissonian statistics. Albeit, quantum imaging is a more recent field than other quantum technologies, e.g. quantum information, it is now mature enough for application. Several different protocols have been proposed, some of them only theoretically, others with an experimental implementation and a few of them pointing to a clear application. Here we present a few of the most mature protocols ranging from ghost imaging to sub shot noise imaging and sub-Rayleigh imaging.

162 citations

Journal ArticleDOI
TL;DR: A simple scheme is experimentally demonstrated that captures most of the information in the full electromagnetic field in the image plane and has a greatly improved ability to estimate the distance between a pair of closely separated sources, achieving near-quantum-limited performance and immunity to Rayleigh's curse.
Abstract: Every imaging system has a resolution limit, typically defined by Rayleigh's criterion. Given a fixed number of photons, the amount of information one can gain from an image about the separation between two sources falls to zero as the separation drops below this limit, an effect dubbed ``Rayleigh's curse.'' Recently, in a quantum-information--inspired proposal, Tsang and co-workers found that there is, in principle, infinitely more information present in the full electromagnetic field in the image plane than in the intensity alone, and suggested methods for extracting this information and beating the Rayleigh limit. In this Letter, we experimentally demonstrate a simple scheme that captures most of this information, and show that it has a greatly improved ability to estimate the distance between a pair of closely separated sources, achieving near-quantum-limited performance and immunity to Rayleigh's curse.

152 citations

References
More filters
01 Oct 1999
TL;DR: In this article, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Abstract: The book is comprised of 15 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves.

19,503 citations

Journal ArticleDOI
TL;DR: The second edition of this respected text considerably expands the original and reflects the tremendous advances made in the discipline since 1968 as discussed by the authors, with a special emphasis on applications to diffraction, imaging, optical data processing, and holography.
Abstract: The second edition of this respected text considerably expands the original and reflects the tremendous advances made in the discipline since 1968. All material has been thoroughly updated and several new sections explore recent progress in important areas, such as wavelength modulation, analog information processing, and holography. Fourier analysis is a ubiquitous tool with applications in diverse areas of physics and engineering. This book explores these applications in the field of optics with a special emphasis on applications to diffraction, imaging, optical data processing, and holography. This book can be used as a textbook to satisfy the needs of several different types of courses, and it is directed toward both engineers ad physicists. By varying the emphasis on different topics and specific applications, the book can be used successfully in a wide range of basic Fourier Optics or Optical Signal Processing courses.

12,159 citations

Book
01 Jan 1968
TL;DR: The second edition of this respected text considerably expands the original and reflects the tremendous advances made in the discipline since 1968 as discussed by the authors, with a special emphasis on applications to diffraction, imaging, optical data processing, and holography.
Abstract: The second edition of this respected text considerably expands the original and reflects the tremendous advances made in the discipline since 1968. All material has been thoroughly updated and several new sections explore recent progress in important areas, such as wavelength modulation, analog information processing, and holography. Fourier analysis is a ubiquitous tool with applications in diverse areas of physics and engineering. This book explores these applications in the field of optics with a special emphasis on applications to diffraction, imaging, optical data processing, and holography. This book can be used as a textbook to satisfy the needs of several different types of courses, and it is directed toward both engineers ad physicists. By varying the emphasis on different topics and specific applications, the book can be used successfully in a wide range of basic Fourier Optics or Optical Signal Processing courses.

9,800 citations

Book
01 Jan 1995
TL;DR: In this article, the authors present a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, and scattering of partially coherent light by random media.
Abstract: This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topics treated in the book. Much of the book is based on courses given by them at universities, scientific meetings and laboratories throughout the world. This book will undoubtedly become an indispensable aid to scientists and engineers concerned with modern optics, as well as to teachers and graduate students of physics and engineering.

7,658 citations

Journal ArticleDOI
19 Nov 2004-Science
TL;DR: This work has shown that conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.
Abstract: Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurement. Conventional measurement techniques typically fail to reach these limits. Conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.

2,421 citations