scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Subatomic Features on the Silicon (111)-(7×7) Surface Observed by Atomic Force Microscopy

21 Jul 2000-Science (American Association for the Advancement of Science)-Vol. 289, Iss: 5478, pp 422-425
TL;DR: A distinct substructure is reported on in the images of individual adatoms on silicon (111)-(7x7), two crescents with a spherical envelope, interpreted as images of two atomic orbitals of the front atom of the tip.
Abstract: The atomic force microscope images surfaces by sensing the forces between a sharp tip and a sample. If the tip-sample interaction is dominated by short-range forces due to the formation of covalent bonds, the image of an individual atom should reflect the angular symmetry of the interaction. Here, we report on a distinct substructure in the images of individual adatoms on silicon (111)-(7x7), two crescents with a spherical envelope. The crescents are interpreted as images of two atomic orbitals of the front atom of the tip. Key for the observation of these subatomic features is a force-detection scheme with superior noise performance and enhanced sensitivity to short-range forces.

Content maybe subject to copyright    Report

Citations
More filters
Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations

Journal ArticleDOI
TL;DR: The most widely used technique for atomic-resolution force microscopy in vacuum is frequency-modulation AFM (FM-AFM), as well as other dynamic methods as discussed by the authors.
Abstract: This article reviews the progress of atomic force microscopy in ultrahigh vacuum, starting with its invention and covering most of the recent developments. Today, dynamic force microscopy allows us to image surfaces of conductors and insulators in vacuum with atomic resolution. The most widely used technique for atomic-resolution force microscopy in vacuum is frequency-modulation atomic force microscopy (FM-AFM). This technique, as well as other dynamic methods, is explained in detail in this article. In the last few years many groups have expanded the empirical knowledge and deepened our theoretical understanding of frequency-modulation atomic force microscopy. Consequently spatial resolution and ease of use have been increased dramatically. Vacuum atomic force microscopy opens up new classes of experiments, ranging from imaging of insulators with true atomic resolution to the measurement of forces between individual atoms.

1,948 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods and present a detailed quantitative comparison between theoretical simulations and experiment.

1,908 citations

Journal ArticleDOI
TL;DR: In this paper, two critical steps towards soot production in combustors are the decomposition of the fuel and the subsequent formation of aromatic hydrocarbons with one to three benzenoid rings.

499 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) has a unique capability of allowing the high-resolution imaging of biological samples on substratum surfaces in physiological solutions, which has enabled the direct visualization of dynamic structural changes and dynamic interactions occurring in individual biological macromolecules, which is not possible with other techniques as discussed by the authors.

497 citations


Cites background from "Subatomic Features on the Silicon (..."

  • ...Therefore, the use of small amplitude enhances sensitivity to the short-range interactions and reduces sensitivity to the long-range interactions, leading to a higher spatial resolution [129,130]....

    [...]

  • ...The advantages of using FM–AFM over contact-mode AFM include the precise control of the vertical tip position without instabilities especially in the short-range interaction regime, the capability of imaging isolated molecules weakly bound to a substrate, and enhanced sensitivity to the short-range interaction force [129] and hence a higher spatial resolution [130]....

    [...]

References
More filters
Book
01 Jan 1939

14,299 citations

Journal ArticleDOI
TL;DR: The atomic force microscope as mentioned in this paper is a combination of the principles of the scanning tunneling microscope and the stylus profilometer, which was proposed as a method to measure forces as small as 10-18 N. As one application for this concept, they introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale.
Abstract: The scanning tunneling microscope is proposed as a method to measure forces as small as 10-18 N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results in air demonstrate a lateral resolution of 30 A and a vertical resolution less than 1 A.

12,344 citations

Journal ArticleDOI
TL;DR: A model potential-energy function comprising both two- and three-atom contributions is proposed to describe interactions in solid and liquid forms of Si, suggesting a temperature-independent inherent structure underlies the liquid phase, just as for ``simple'' liquids with only pair interactions.
Abstract: A model potential-energy function comprising both two- and three-atom contributions is proposed to describe interactions in solid and liquid forms of Si. Implications of this potential are then explored by molecular-dynamics computer simulation, using 216 atoms with periodic boundary conditions. Starting with the diamond-structure crystal at low temperature, heating causes spontaneous nucleation and melting. The resulting liquid structurally resembles the real Si melt. By carrying out steepest-descent mappings of system configurations onto potential-energy minima, two main conclusions emerge: (1) a temperature-independent inherent structure underlies the liquid phase, just as for ``simple'' liquids with only pair interactions; (2) the Lindemann melting criterion for the crystal apparently can be supplemented by a freezing criterion for the liquid, where both involve critical values of appropriately defined mean displacements from potential minima.

4,345 citations

Journal ArticleDOI
TL;DR: In this article, a frequency modulation (FM) technique has been demonstrated which enhances the sensitivity of attractive mode force microscopy by an order of magnitude or more, which is made possible by operating in a moderate vacuum (<10−3 Torr).
Abstract: A new frequency modulation (FM) technique has been demonstrated which enhances the sensitivity of attractive mode force microscopy by an order of magnitude or more. Increased sensitivity is made possible by operating in a moderate vacuum (<10−3 Torr), which increases the Q of the vibrating cantilever. In the FM technique, the cantilever serves as the frequency determining element of an oscillator. Force gradients acting on the cantilever cause instantaneous frequency modulation of the oscillator output, which is demodulated with a FM detector. Unlike conventional ‘‘slope detection,’’ the FM technique offers increased sensitivity through increased Q without restricting system bandwidth. Experimental comparisons of FM detection in vacuum (Q∼50 000) versus slope detection in air (Q∼100) demonstrated an improvement of more than 10 times in sensitivity for a fixed bandwidth. This improvement is evident in images of magnetic transitions on a thin‐film CoPtCr magnetic disk. In the future, the increased sensitivi...

2,155 citations

01 Jan 2001
TL;DR: In this paper, a frequency modulation (FM) technique has been demonstrated which ennances the sensitivity of attractive mode force microscopy by an order of magnitude or more, which is made possible by operating in a moderate vacuum ( < 10 ’ Torr).
Abstract: A new frequency modulation (FM) technique has been demonstrated which ennances the sensitivity of attractive mode force microscopy by an order of magnitude or more. Increased sensitivity is made possible by operating in a moderate vacuum ( < 10 ’ Torr), which increases the Q of the vibrating cantilever. In the FM technique, the cantilever serves as the frequency determining element of an oscillator. Force gradients acting on the cantilever cause instantaneous frequency modulation of the oscillator output, which is demodulated with a FM detector. Unlike conventional “slope detection,” the FM technique offers increased sensitivity through increased Q without restricting system bandwidth. Experimental comparisons of FM detection in vacuum (Q50 000) versus slope detection in air (Q100) demonstrated an improvement of more than 10 times in sensitivity for a fixed bandwidth. This improvement is evident in images of magnetic transitions on a thin-film CoPtCr magnetic disk. In the future, the increased sensitivity offered by this technique should extend the range of problems accessible by force microscopy.

1,916 citations