scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Subneuronal Fate of Intracerebroventricular Injected 3H-Melatonin

01 Mar 1988-Journal of Pineal Research (Blackwell Publishing Ltd)-Vol. 5, Iss: 2, pp 125-133
TL;DR: The fate of 3H‐melatonin after its intracerebroventricular administration was studied both in different brain regions and in subcellular fractions and the rate of disappearance from the brain was found to be multiphasic.
Abstract: The fate of 3H-melatonin after its intracerebroventricular administration was studied both in different brain regions and in subcellular fractions. The rate of disappearance of 3H-melatonin from the brain was found to be multiphasic. Forty-eight h after a 3H-melatonin injection, radioactivity was still present in the brain. Nonlinear regression analysis of the data confirmed a very rapid half-life component and (t1/2 = 3.04 min) a slower one (t1/2 = 36 min). We also found a much slower component (t1/2 = 24 h), however. Considerable metabolism of melatonin was detected since only 36.5% of administered radioactivity remained as melatonin at 45 min. The subcellular distribution of the radioactivity present in the brain at all times studied showed that a major proportion of the radioactivity remained in the cytosol and respectively decreasing proportions in the 900g pellet, mitochondrial pellet, and the microsomes. The radioactivity remaining in the cytosol at 45 min was found to coelute with a macromolecule that was resolved by gel filtration and could be displaced by previous melatonin administration. Purified nuclei retained 0.71% of the radioactivity at 45 min; of this total, 73% was KCl extractable. Our data suggest the presence of a binding site in the cytosol and in the nucleus. The presence of 3H-melatonin up to 48 h after its administration may account for melatonin's long-term effects on brain function.
Citations
More filters
Journal ArticleDOI
TL;DR: Maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth, and unique ways of action turn melatonin into a biological time-domain-acting molecule.
Abstract: Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.

318 citations

Journal ArticleDOI
TL;DR: Results indicate that melatonin through its receptor can modulate the survival of newborn neurons in the adult hippocampus, making it the first known exogenously applicable substance with such specificity.

208 citations


Cites background from "Subneuronal Fate of Intracerebroven..."

  • ...…melatonin (rapid half-life of 3.04–5.97 min, a slower half-life of 36–47.52 min and the slowest half-life of 24 h), and the bioavailability of melatonin up to 48 h after its administration (Anton-Tay et al, 1988; Vitte et al, 1988) as well as the melatonin levels in plasma (Supplementary Table 1)....

    [...]

Journal ArticleDOI
TL;DR: The kinetics of melatonin-calmodulin binding suggest that the hormone modulates cell activity through intracellular binding to the protein at physiological concentration ranges, which probably represents a major mechanism for regulation and synchronization of cell physiology.
Abstract: In this article, we review the data concerning melatonin interactions with calmodulin. The kinetics of melatonin-calmodulin binding suggest that the hormone modulates cell activity through intracellular binding to the protein at physiological concentration ranges. Melatonin interaction with calmodulin may allow the hormone to modulate rhythmically many cellular functions. Melatonin's effect on tubulin polymerization, and cytoskeletal changes in MDCK and N1E-115 cells cultured with melatonin, suggest that at low concentrations (10−9 M) cytoskeletal effects are mediated by its antagonism to Ca2+-calmodulin. At higher concentrations (10−5 M), non-specific binding of melatonin to tubulin occurs thus overcoming the specific melatonin antagonism to Ca2+-calmodulin. Since the structures of melatonin and calmodulin are phylogenetically well preserved, calmodulin-melatonin interaction probably represents a major mechanism for regulation and synchronization of cell physiology.

198 citations

Journal ArticleDOI
TL;DR: Melatonin-calmodulin binding could modulate many intracellular Ca++ functions and thus, the set-point for cell activity will follow the rhythmic circulating levels of the pineal hormone.

186 citations

Journal ArticleDOI
TL;DR: The hypothesis that MEL acts as a CaM antagonist and cellular functions may be rhythmically regulated by MEL modulation of CaM-dependent protein phosphorylation is supported.

140 citations

References
More filters
Journal Article
TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.

289,852 citations

Journal ArticleDOI
TL;DR: A method is described for the minimization of a function of n variables, which depends on the comparison of function values at the (n 41) vertices of a general simplex, followed by the replacement of the vertex with the highest value by another point.
Abstract: A method is described for the minimization of a function of n variables, which depends on the comparison of function values at the (n 41) vertices of a general simplex, followed by the replacement of the vertex with the highest value by another point. The simplex adapts itself to the local landscape, and contracts on to the final minimum. The method is shown to be effective and computationally compact. A procedure is given for the estimation of the Hessian matrix in the neighbourhood of the minimum, needed in statistical estimation problems.

27,271 citations

Journal ArticleDOI
TL;DR: It is revealed that norepinephrine and dopamine are specifically localized in complex systems of neurons in the brain, a finding which lends support to the hypothesis that both amines may be neurotransmitters in the central nervous system.
Abstract: NOREPINEPHRINE is found in appreciable amounts in mammalian brain tissue. VOGT (1954) showed that this amine was unequally distributed in various regions of the cat brain, the highest concentrations being found in the hypothalamus. Similar findings were reported for other animal species (BERTLER and ROSENGREN, 1959a; MCGEER, MCGEER and WADA, 1963) and man (SANO, GAMO, KAKIMOTO, TANAGUCHI, TAKE~ADA and NISHINUMA, 1959). Dopamine is also present in the brain in comparable amounts to norepinephrine (MONTAGU, 1957 ; CARLSSON, LINDQVIST, MAGNUSSON and WALDECK, 1958) but with a different regional distribution, the highest concentrations being in the corpus striatum of both animals and man (BERTLER and ROSENGREN, 1959a; SANO et al., 1959; EHRINGER and HORNYKIEWICZ, 1960; BERTLER, 1961). The anatomical distribution of these two catecholamines in the brain was confirmed by the use of fluorescent histochemical techniques which allow a precise description of the cellular localization of the amines in brain tissue (CARLSSON, FALK and HILLARP, 1962; DAHLSTROM and FUXE, 1964; FUXE, 1965). These techniques revealed that norepinephrine and dopamine are specifically localized in complex systems of neurons in the brain, a finding which lends support to the hypothesis that both amines may be neurotransmitters in the central nervous system. The metabolism of catecholamines in the rat brain was studied by introducing small amounts of radioactive norepinephrine or dopamine directly into the lateral ventricle (MILHAUD and GLOWINSKI, 1962, 1963; GLOWINSKI, KOPIN and AXELROD, 1965; GLOWINSKI, IVERSEN and AXELROD, 1966). By this approach the blood-brain barrier to catecholamines can be circumvented, penetration of the radioactive catecholamines into the brain being allowed. The disposition of PHInorepinephrine in the whole brain indicates that [3H]norepinephrine introduced into the lateral ventricle of the brain mixes with the endogenous amine and can be used as a tracer to study the biochemical behaviour of norepinephrine in the brain (GLOWINSKI and AXELROD, 1966). PHIDopamine, which is also taken up and retained in the brain, is rapidly metabolized and converted to norepinephrine (GLOWINSKI et a!., 1966). The unequal regional distribution of the endogeneous catecholamines in the brain led us to undertake a study of the disposition of radioactive norepinephrine and dopamine in various brain regions after intraventricular injection. The regional

5,385 citations

Journal ArticleDOI
TL;DR: The synthesis of melatonin labeled in three different positions with Cl4 or H3, the physiological disposition of administered hormone, and its metabolism in uivo and in animal studies are described.

340 citations