scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Substrate Integrated Waveguide (SIW) Leaky-Wave Antenna With Transverse Slots

TL;DR: In this article, a uniform slotted SIW leaky-wave antenna is designed that has good beam scanning from near broadside (though not exactly at broadside) to forward endfire.
Abstract: A novel slotted substrate integrated waveguide (SIW) leaky-wave antenna is proposed. This antenna works in the TE10 mode of the SIW. Leakage is obtained by introducing a periodic set of transverse slots on the top of the SIW, which interrupt the current flow on the top wall. It is seen that three modes (a leaky mode, a proper waveguide mode, and a surface-wave-like mode) can all propagate on this structure. The wavenumbers of the modes are calculated theoretically and are numerically evaluated by HFSS simulation. The leakage loss, dielectric loss, and conductor loss are also analyzed. A uniform slotted SIW leaky-wave antenna is designed that has good beam scanning from near broadside (though not exactly at broadside) to forward endfire. This type of SIW leaky-wave antenna has a wide impedance bandwidth and a narrow beam that scans with frequency. Measured results are consistent with the simulation and the theoretical analysis.
Citations
More filters
Journal ArticleDOI
23 Mar 2012
TL;DR: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs), a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure.
Abstract: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs). An LWA uses a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure. Such antennas may be uniform, quasi-uniform, or periodic. After reviewing the basic physics and operating principles, a summary of some recent advances for these types of structures is given. Recent advances include structures that can scan to endfire, structures that can scan through broadside, structures that are conformal to surfaces, and structures that incorporate power recycling or include active elements. Some of these novel structures are inspired by recent advances in the metamaterials area.

988 citations

Journal ArticleDOI
TL;DR: In this article, a transition printed on the same SIW substrate is proposed to improve the matching performance of SIW horn antennas in the Ku-band with a substrate thinner than λ 0/10.
Abstract: The substrate integrated waveguide (SIW) technology allows to construct several types of commonly used antennas in a planar way. However, some practical constraints limit their performances when frequencies below 20 GHz are considered. In the case of SIW horn antennas, the available substrates are much thinner than the wavelength yielding to poor matching and undesired back radiation. In this paper, an innovative structure to overcome these limitations is presented. It consists of a transition printed on the same SIW substrate, which improves both the radiation and the matching performances of conventional SIW horns. The horn shape is also further optimized by reducing its dimensions required for a given directivity. This is obtained by modifying the horn profile in order to effectively combine different TE modes. Guidelines are provided to design this type of thin and compact SIW horn antenna. They were applied to manufacture a prototype in the Ku-band with a substrate thinner than λ0/10. Measurement results validate the proposed concepts showing excellent performances.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an approach to realize substrate integrated waveguide (SIW)-based leaky-wave antennas (LWAs) supporting continuous beam scanning from backward to forward above the cutoff frequency.
Abstract: In this paper, we propose an approach to realize substrate integrated waveguide (SIW)-based leaky-wave antennas (LWAs) supporting continuous beam scanning from backward to forward above the cutoff frequency. First, through phase delay analysis, it was found that SIWs with straight transverse slots support backward and forward radiation of the $-1$ -order mode with an open-stopband (OSB) in between. Subsequently, by introducing additional longitudinal slots as parallel components, the OSB can be suppressed, leading to continuous beam scanning at least from $-40^\circ$ through broadside to 35°. The proposed method only requires a planar structure and obtains less dispersive beam scanning compared with a composite right/left-handed (CRLH) LWA. Both simulations and measurements verify the intended beam scanning operation while verifying the underlying theory.

171 citations


Cites background from "Substrate Integrated Waveguide (SIW..."

  • ...slots [29], [30], and the forward radiating LWA with transverse slots as presented in [31]–[33]....

    [...]

  • ...Furthermore, the LWAs in [31]–[33] are not able to...

    [...]

Journal ArticleDOI
TL;DR: In this article, a printed transition is proposed to match a H-plane SIW horn antenna built in a thin substrate at different frequency bands at the Ku-band at the same time.
Abstract: The substrate integrated waveguide (SIW) technology allows to construct several types of commonly used antennas in a planar way. However, frequency limitations associated to commercial substrates appear in the implementation of certain types of antennas, e.g., SIW horn antennas are not well matched when the substrate thickness is much smaller than the wavelength. A printed transition is proposed to overcome this problem. Differently from current solutions, no bulky elements are required allowing to maintain the most important features of this technology namely its compactness and ease of manufacturing. In order to quickly analyze and design the transition, both a coupled resonator and a transmission line models are developed, together with design guidelines. The proposed transition is designed to match a H-plane SIW horn antenna built in a thin substrate $({\rm thickness} at different frequency bands at the Ku-band. Experimental results for 3 different transitions show that the matching characteristics are efficiently improved compared with the conventional SIW horn antenna and validates the proposed models.

170 citations

Journal ArticleDOI
TL;DR: In this paper, a substrate integrated waveguide (SIW) leaky-wave antenna with a narrow beam and sidelobe suppression was investigated for end-fire-radiation with an SIW antenna with tapered transverse slots on only the top and bottom planes.
Abstract: A new substrate integrated waveguide (SIW) leaky-wave antenna is investigated for endfire-radiation with a narrow beam and sidelobe suppression. Maximum directivity conditions for endfire-radiation from line sources with different amplitude distributions are theoretically discussed as a design aid. Interestingly, for endfire beams it is seen that designs that have a lower sidelobe level can also have a higher directivity, contrary to what is normally encountered for broadside beams. An SIW leaky-wave antenna with tapered transverse slots on only the top and bottom planes is presented. Compared with a previous leaky-wave antenna having uniform transverse slots on the top plane, the presented leaky-wave antenna has a main beam that can radiate exactly at endfire and also has a lower sidelobe level. The design of the low sidelobe antenna is based on the leaky mode, which loses physical significance as the beam is scanned to the endfire direction. Nevertheless, the antenna retains a good beam shape and a low sidelobe level when it radiates at endfire. A prototype is made, and measured results are consistent with theoretical and simulated results.

144 citations


Cites background from "Substrate Integrated Waveguide (SIW..."

  • ...Although the antenna design is based on only the leaky mode, which radiates well in the fast-wave region, the antenna also works well and retains a low sidelobe level when it radiates exactly at endfire where the surface wave also has an important contribution to the radiation pattern [19]....

    [...]

  • ...More explanation of the three modes can be found in [19]....

    [...]

  • ...its top plane [19] can support an improper mode (leaky-wave...

    [...]

  • ...With respect to [19], the propagation wavenumber of presented leaky structure can therefore be calculated by...

    [...]

References
More filters
Book
01 Jan 1981
TL;DR: The CEM for Antennas: Finite Difference Time Domain Method (FDTDM) as mentioned in this paper is a CEM-based method for measuring the time domain of an antenna.
Abstract: Antenna Fundamentals and Definitions. Some Simple Radiating Systems and Antenna Practice. Arrays. Line Sources. Resonant Antennas: Wires and Patches. Broadband Antennas. Aperture Antennas. Antenna Synthesis. Antennas in Systems and Antenna Measurements. CEM for Antennas: The Method of Moments. CEM for Antennas: Finite Difference Time Domain Method. CEM for Antennas: High-Frequency Methods. Appendices. Index.

3,854 citations

Journal ArticleDOI
TL;DR: In this paper, a planar platform is developed in which the microstrip line and rectangular waveguide are fully integrated on the same substrate, and they are interconnected via a simple taper.
Abstract: Usually transitions from microstrip line to rectangular waveguide are made with three-dimensional complex mounting structures. In this paper, a new planar platform is developed in which the microstrip line and rectangular waveguide are fully integrated on the same substrate, and they are interconnected via a simple taper. Our experiments at 28 GHz show that an effective bandwidth of 12% at 20 dB return loss is obtained with an in-band insertion loss better than 0.3 dB. The new transition allows a complete integration of waveguide components on substrate with MICs and MMICs.

1,631 citations


"Substrate Integrated Waveguide (SIW..." refers methods in this paper

  • ...In order to obtain a better match between the input SIW and the microstrip line, we also linearly taper the microstrip line using the method described in [21]....

    [...]

Journal ArticleDOI
17 Jan 2005
TL;DR: In this article, a numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure.
Abstract: The substrate integrated waveguide (SIW) technique makes it possible that a complete circuit including planar circuitry, transitions, and rectangular waveguides are fabricated in planar form using a standard printed circuit board or other planar processing techniques. In this paper, guided wave and modes characteristics of such an SIW periodic structure are studied in detail for the first time. A numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure. Two different lengths of the SIW are numerically simulated under multimode excitation. By means of our proposed technique, the complex propagation constant of each SIW mode can accurately be extracted and the electromagnetic bandstop phenomena of periodic structures are also investigated. Experiments are made to validate our proposed technique. Simple design rules are provided and discussed.

1,356 citations


"Substrate Integrated Waveguide (SIW..." refers background or methods in this paper

  • ...The SIW can be taken as a conventional dielectric-filled rectangular waveguide with an effective width [8]....

    [...]

  • ...The effective width can be approximately calculated from empirical formulas [5], [7], [8] and can also be accurately calculated from HFSS [6] and other numerical calculations [9]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the dispersion properties of the substrate integrated rectangular waveguide (SIRW) were rigorously obtained using the BI-RME method combined with the Floquet's theorem.
Abstract: Dispersion properties of the substrate integrated rectangular waveguide (SIRW) are rigorously obtained using the BI-RME method combined with the Floquet's theorem. Our analysis shows that the SIRW basically has the same guided-wave characteristics as the conventional rectangular waveguide. Empirical equations are derived from the calculated dispersion curves in order to estimate the cutoff frequency of the first two dominant modes of the SIRW To validate the analysis results, an SIRW guide was designed and measured. Very good agreements between the experimental and theoretical results were obtained.

776 citations


"Substrate Integrated Waveguide (SIW..." refers methods in this paper

  • ...The effective width can be approximately calculated from empirical formulas [5], [7], [8] and can also be accurately calculated from HFSS [6] and other numerical calculations [9]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a new method of analysis is presented for the determination of complex propagation constants in substrate integrated waveguides (SIWs) by making use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure.
Abstract: A new method of analysis is presented in this paper for the determination of complex propagation constants in substrate integrated waveguides (SIWs) This method makes use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure The proposed method is further applied to extract results in terms of parametric curves and graphs which demonstrate fundamental and interesting wave guidance and leakage properties of this type of periodic waveguide Useful design rules are extracted from this analysis, suggesting that appropriate design parameters and regions should be carefully selected for practical applications In addition, comprehensive review and comparisons with published results are also presented to show the performance and accuracy of the proposed modeling technique Practical measurements of fabricated samples with different levels of loss have confirmed the accuracy of this new method and validity of design rules

765 citations


"Substrate Integrated Waveguide (SIW..." refers background or methods in this paper

  • ...Substrate integrated waveguide (SIW) has been recently investigated [4]–[9] for its significant advantages such as low cost, low loss, and easy integration with planar circuits....

    [...]

  • ...The effective width can be approximately calculated from empirical formulas [5], [7], [8] and can also be accurately calculated from HFSS [6] and other numerical calculations [9]....

    [...]