scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sulfur Kβ X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds

TL;DR: In this article, a complementary X-ray-based spectroscopy technique, sulfur Kβ Xray emission spectrograph (XES), was explored as a potential analytical tool for sulfur speciation in complex samples.
Abstract: Until recently, sulfur was known as a "spectroscopically silent" element because of a paucity of convenient spectroscopic probes suitable for in situ chemical speciation. In recent years the technique of sulfur K-edge X-ray absorption spectroscopy (XAS) has been used extensively in sulfur speciation in a variety of different fields. With an initial focus on reduced forms of organic sulfur, we have explored a complementary X-ray based spectroscopy - sulfur Kβ X-ray emission spectroscopy (XES) - as a potential analytical tool for sulfur speciation in complex samples. We compare and contrast the sensitivity of sulfur Kβ XES with that of sulfur K-edge XAS, and find differing sensitivities for the two techniques. In some cases an approach involving both sulfur K-edge XAS and sulfur Kβ XES may be a powerful combination for deducing sulfur speciation in samples containing complex mixtures.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors review the range of hard X-ray photon-in, photon-out experiments that are presently possible, and highlight their recent applications in catalysis research, and discuss the ongoing need for conventional XAS applications, either in standalone applications or in combination with more advanced approaches.
Abstract: X-ray spectroscopy has had a significant and continually growing impact on catalysis research for nearly 50 years. In particular, the ability to obtain element selective electronic and geometric structural information via the X-ray absorption (XAS) edge and extended X-ray absorption fine structure regions, respectively, has been a major asset for catalysis research. In the last two decades, the development of dedicated synchrotron-based X-ray emission spectrometers has greatly expanded the range of possible experiments, enabling both nonresonant and resonant X-ray emission spectroscopy experiments that can provide greater selectivity and more detailed electronic and structural information. Herein, we briefly review the range of hard X-ray photon-in, photon-out experiments that are presently possible, and highlight their recent applications in catalysis research. We also discuss the ongoing need for conventional XAS applications, either in standalone applications or in combination with more advanced approaches. The open opportunities and ongoing challenges for applying these methods, and ultimately for analyzing and interpreting the data, are also discussed.

14 citations

Journal ArticleDOI
TL;DR: In this article, an unsupervised machine learning algorithm was used for extracting chemically relevant information in X-ray absorption near edge structure (XANES) and in valence-to-core X-rays emission spectra (VtC-XES) for classification of a broad ensemble of sulphorganic molecules.
Abstract: We report a comprehensive computational study of unsupervised machine learning for extraction of chemically relevant information in X-ray absorption near edge structure (XANES) and in valence-to-core X-ray emission spectra (VtC-XES) for classification of a broad ensemble of sulphorganic molecules. By progressively decreasing the constraining assumptions of the unsupervised machine learning algorithm, moving from principal component analysis (PCA) to a variational autoencoder (VAE) to t-distributed stochastic neighbour embedding (t-SNE), we find improved sensitivity to steadily more refined chemical information. Surprisingly, when embedding the ensemble of spectra in merely two dimensions, t-SNE distinguishes not just oxidation state and general sulphur bonding environment but also the aromaticity of the bonding radical group with 87% accuracy as well as identifying even finer details in electronic structure within aromatic or aliphatic sub-classes. We find that the chemical information in XANES and VtC-XES is very similar in character and content, although they unexpectedly have different sensitivity within a given molecular class. We also discuss likely benefits from further effort with unsupervised machine learning and from the interplay between supervised and unsupervised machine learning for X-ray spectroscopies. Our overall results, i.e., the ability to reliably classify without user bias and to discover unexpected chemical signatures for XANES and VtC-XES, likely generalize to other systems as well as to other one-dimensional chemical spectroscopies.

12 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore selenium Kα1 high energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) as a novel approach for chemical speciation in comparison with conventional Se K-edge XAS.
Abstract: Selenium is in many ways an enigmatic element. It is essential for health but toxic in excess, with the difference between the two doses being narrower than for any other element. Environmentally, selenium is of concern due to its toxicity. As the rarest of the essential elements, its low levels often provide challenges to the analytical chemist. X-ray absorption spectroscopy (XAS) provides a powerful tool for in situ chemical speciation but is severely limited by poor spectroscopic resolution arising from core-hole lifetime broadening. Here we explore selenium Kα1 high energy resolution fluorescence detected XAS (HERFD-XAS) as a novel approach for chemical speciation of selenium, in comparison with conventional Se K-edge XAS. We present spectra of a range of selenium species relevant to environmental and life science studies, including spectra of seleno-amino acids, which show strong similarities with S K-edge XAS of their sulfur congeners. We discuss strengths and limitations of HERFD-XAS, showing improvements in both speciation performance and low concentration detection. We also develop a simple method to correct fluorescence self-absorption artifacts, which is generally applicable to any HERFD-XAS experiment.

11 citations

Journal ArticleDOI
TL;DR: In this article, a combination of electronic structure theory and statistical mechanics is presented to characterize the structure of the initial state of the charged cathode on an atomic level, and a stability analysis of differently sulfurized TBT dimers as the basic polymer unit calculated within density functional theory is performed.
Abstract: Polymer-based batteries that utilize organic electrode materials are considered viable candidates to overcome the common drawbacks of lithium-sulfur (Li-S) batteries. A promising cathode can be developed using a conductive, flexible, and free-standing polymer, poly(4-thiophen-3-yl)benzenethiol) (PTBT), as the sulfur host material. By a vulcanization process, sulfur is embedded into this polymer. Here, we present a combination of electronic structure theory and statistical mechanics to characterize the structure of the initial state of the charged cathode on an atomic level. We perform a stability analysis of differently sulfurized TBT dimers as the basic polymer unit calculated within density-functional theory (DFT) and combine this with a statistical binding model for the binding probability distributions of the vulcanization process. From this, we deduce sulfur chain length ("rank") distributions and calculate the average sulfur rank depending on the sulfur concentration and temperature. This multi-scale approach allows us to bridge the gap between the local description of the covalent bonding process and the derivation of the macroscopic properties of the cathode. Our calculations show that the main reaction of the vulcanization process leads to high-probability states of sulfur chains cross-linking TBT units belonging to different polymer backbones, with a dominant rank around n = 5. In contrast, the connection of adjacent TBT units of the same polymer backbone by a sulfur chain is the side reaction. These results are experimentally supported by Raman spectroscopy.

6 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the valence-to-core (VtC) Kβ sulfur X-ray emission spectroscopy (XES) to perform quantitative analysis of different sulfur compounds produced in a lithium sulfur (Li-S) battery during discharge.

5 citations

References
More filters
Journal ArticleDOI
Frank Neese1
TL;DR: An overview of the current possibilities of ORCA is provided and its efficiency is documents.
Abstract: ORCA is a general-purpose quantum chemistry program package that features virtually all modern electronic structure methods (density functional theory, many-body perturbation and coupled cluster theories, and multireference and semiempirical methods). It is designed with the aim of generality, extendibility, efficiency, and user friendliness. Its main field of application is larger molecules, transition metal complexes, and their spectroscopic properties. ORCA uses standard Gaussian basis functions and is fully parallelized. The article provides an overview of its current possibilities and documents its efficiency. © 2011 John Wiley & Sons, Ltd.

8,821 citations

Journal ArticleDOI
22 Apr 1987-Nature
TL;DR: The major source of cloud-condensation nuclei (CCN) over the oceans appears to be dimethylsulphide, which is produced by planktonic algae in sea water and oxidizes in the atmosphere to form a sulphate aerosol as mentioned in this paper.
Abstract: The major source of cloud-condensation nuclei (CCN) over the oceans appears to be dimethylsulphide, which is produced by planktonic algae in sea water and oxidizes in the atmosphere to form a sulphate aerosol Because the reflectance (albedo) of clouds (and thus the Earth's radiation budget) is sensitive to CCN density, biological regulation of the climate is possible through the effects of temperature and sunlight on phytoplankton population and dimethylsulphide production. To counteract the warming due to doubling of atmospheric CO2, an approximate doubling of CCN would be needed.

3,783 citations

Journal ArticleDOI
TL;DR: A family of segmented all-electron relativistically contracted (SARC) basis sets for the elements Hf-Hg is constructed for use in conjunction with the Douglas-Kroll-Hess (DKH) and zeroth-order regular approximation (ZORA) scalar relativistic Hamiltonians.
Abstract: A family of segmented all-electron relativistically contracted (SARC) basis sets for the elements Hf−Hg is constructed for use in conjunction with the Douglas−Kroll−Hess (DKH) and zeroth-order regular approximation (ZORA) scalar relativistic Hamiltonians. The SARC basis sets are loosely contracted and thus offer computational advantages compared to generally contracted relativistic basis sets, while their sufficiently small size allows them to be used in place of effective core potentials (ECPs) for routine studies of molecules. Practical assessments of the SARC basis sets in DFT calculations of atomic (ionization energies) as well as molecular properties (geometries and bond dissociation energies for MHn complexes) confirm that the basis sets yield accurate and reliable results, providing a balanced description of core and valence electron densities. CCSD(T) calculations on a series of gold diatomic compounds also demonstrate the applicability of the basis sets to correlated methods. The SARC basis sets ...

976 citations

Journal ArticleDOI
08 Jun 2018-Science
TL;DR: In situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover is reported.
Abstract: Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography–mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.

362 citations

Journal ArticleDOI
TL;DR: In this article, the utility of sulfur K-edge X-ray absorption spectroscopy for the determination and quantification of sulfur forms in petroleum asphaltenes has been investigated and the results represent the first demonstration that nonvolatile sulfur forms can be distinguished and approximately quantified by direct measurement.
Abstract: The utility of sulfur K-edge X-ray absorption spectroscopy for the determination and quantification of sulfur forms in petroleum asphaltenes has been investigated. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra were obtained for a selected group of model compounds and for several petroleum asphaltene samples. For the model compounds the sulfur XANES was found to vary widely from compound to compound and to provide a fingerprint for the form of sulfur involved. The use of third derivatives of the spectra enabled discrimination of mixtures of sulfidic and thiophenic model compounds and allowed approximate quantification of the amount of each component in the mixtures and in the asphaltene samples. These results represent the first demonstration that nonvolatile sulfur forms can be distinguished and approximately quantified by direct measurement.

244 citations