scispace - formally typeset
Journal ArticleDOI

Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry

Reads0
Chats0
TLDR
It is shown that proton or silicon centers can activate the exchange of S�F bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis.
Abstract
Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed.

read more

Citations
More filters
Journal ArticleDOI

Late-stage fluorination: fancy novelty or useful tool?

TL;DR: It is outlined how an improved understanding of the bonding interactions of fluoride could lead to a new class of mild fluorinating reagents and a range of functional-group-tolerant reactions.
Journal ArticleDOI

Dendrimers: A versatile nanocarrier for drug delivery and targeting.

TL;DR: The present review provide a comprehensive outline of synthesis of dendrimers, interaction of d endrimer with guest molecules, properties, characterization and their potential applications in pharmaceutical and biomedical field.
Journal ArticleDOI

PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent

TL;DR: An inexpensive, thermally stable deoxyfluorination reagent is reported that fluorinates a broad range of alcohols without substantial formation of elimination side products and enables deoxy fluorination on preparatory scale.
Journal ArticleDOI

Bifluoride-catalysed sulfur( VI ) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates

TL;DR: The bifluoride salts are significantly more active in catalysing the SuFEx reaction compared to organosuperbases, therefore enabling much lower catalyst-loading and the process is practical with regard to the reduced cost of catalyst, polymer purification and by-product recycling.
Journal ArticleDOI

Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue

TL;DR: It is discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family and can selectively target single iLBPs, making them useful for understanding iLBP function.
References
More filters
Journal ArticleDOI

Click Chemistry: Diverse Chemical Function from a Few Good Reactions.

TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Journal ArticleDOI

Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.

TL;DR: A novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported, and the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1, 3-dipoles entering the reaction.
Journal ArticleDOI

1,3-Dipolar Cycloadditions. Past and Future†

TL;DR: In contrast to the very large number of special methods applicable to syntheses in the heterocyclic series, relatively few general methods are available as discussed by the authors, and the 1,3-dipolar addition offers a remarkably wide range of utility in the synthesis of five-membered heterocycles.
Journal ArticleDOI

A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems

TL;DR: A strain-promoted [3 + 2] cycloaddition between cyclooctynes and azides that proceeds under physiological conditions without the need for a catalyst was demonstrated by selective modification of biomolecules in vitro and on living cells, with no apparent toxicity.
Related Papers (5)