scispace - formally typeset
Journal ArticleDOI

Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry

Reads0
Chats0
TLDR
It is shown that proton or silicon centers can activate the exchange of S�F bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis.
Abstract
Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed.

read more

Citations
More filters
Journal ArticleDOI

One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides

TL;DR: A mild, efficient synthesis of sulfonyl fluorides from aryl and heteroaryl bromides utilizing palladium catalysis is described.
Journal ArticleDOI

Modular click chemistry libraries for functional screens using a diazotizing reagent.

TL;DR: A ‘click’ reaction is developed for the simple and rapid formation of azides from primary amines, and is used to prepare a library of over 1,200 azides for subsequent use in the existing triazole annulation click reaction.
Journal ArticleDOI

Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis.

TL;DR: A review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis can be found in this paper.
Journal ArticleDOI

Genetically Encoding Fluorosulfate-l-tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in Vivo

TL;DR: The genetic encoding of fluorosulfate-l-tyrosine (FSY) is reported, the first latent bioreactive Uaa that undergoes sulfur-fluoride exchange (SuFEx) on proteins in vivo, which empowers general proteins with the next generation of click chemistry, SuFEx, which will afford broad utilities in chemical biology, drug discovery, and biotherapeutics.
Journal ArticleDOI

Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis.

TL;DR: In this paper, the authors highlight the differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
References
More filters
Journal ArticleDOI

Click Chemistry: Diverse Chemical Function from a Few Good Reactions.

TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Journal ArticleDOI

Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.

TL;DR: A novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported, and the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1, 3-dipoles entering the reaction.
Journal ArticleDOI

1,3-Dipolar Cycloadditions. Past and Future†

TL;DR: In contrast to the very large number of special methods applicable to syntheses in the heterocyclic series, relatively few general methods are available as discussed by the authors, and the 1,3-dipolar addition offers a remarkably wide range of utility in the synthesis of five-membered heterocycles.
Journal ArticleDOI

A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems

TL;DR: A strain-promoted [3 + 2] cycloaddition between cyclooctynes and azides that proceeds under physiological conditions without the need for a catalyst was demonstrated by selective modification of biomolecules in vitro and on living cells, with no apparent toxicity.
Related Papers (5)