scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Summary of Distributed Resources Impact on Power Delivery Systems

TL;DR: Several system issues which may be encountered as DR penetrates into distribution systems are discussed, including vulnerability and overvoltages due to islanding and coordination with reclosing, system restoration and network issues.
Abstract: Because traditional electric power distribution systems have been designed assuming the primary substation is the sole source of power and short-circuit capacity, DR interconnection results in operating situations that do not occur in a conventional system. This paper discusses several system issues which may be encountered as DR penetrates into distribution systems. The voltage issues covered are the DR impact on system voltage, interaction of DR and capacitor operations, and interaction of DR and voltage regulator and LTC operations. Protection issues include fuse coordination, feeding faults after utility protection opens, impact of DR on interrupting rating of devices, faults on adjacent feeders, fault detection, ground source impacts, single phase interruption on three phase line, recloser coordination and conductor burndown. Loss of power grid is also discussed, including vulnerability and overvoltages due to islanding and coordination with reclosing. Also covered separately are system restoration and network issues.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the state-of-the-art models and methods applied to the optimal DG placement problem can be found in this article, where the authors analyze and classify current and future research trends in this field.
Abstract: The integration of distributed generation (DG) units in power distribution networks has become increasingly important in recent years. The aim of the optimal DG placement (ODGP) is to provide the best locations and sizes of DGs to optimize electrical distribution network operation and planning taking into account DG capacity constraints. Several models and methods have been suggested for the solution of the ODGP problem. This paper presents an overview of the state of the art models and methods applied to the ODGP problem, analyzing and classifying current and future research trends in this field.

767 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review on the unified power quality conditioner (UPQC) to enhance the electric power quality at distribution levels is presented, which is intended to present a broad overview on the different possible UPQC system configurations for single-phase and three-phase (threewire and four-wire) networks, different compensation approaches, and recent developments in the field.
Abstract: This paper presents a comprehensive review on the unified power quality conditioner (UPQC) to enhance the electric power quality at distribution levels. This is intended to present a broad overview on the different possible UPQC system configurations for single-phase (two-wire) and three-phase (three-wire and four-wire) networks, different compensation approaches, and recent developments in the field. It is noticed that several researchers have used different names for the UPQC based on the unique function, task, application, or topology under consideration. Therefore, an acronymic list is developed and presented to highlight the distinguishing feature offered by a particular UPQC. In all 12 acronyms are listed, namely, UPQC-D, UPQC-DG, UPQC-I, UPQC-L, UPQC-MC, UPQC-MD, UPQC-ML, UPQC-P, UPQC-Q, UPQC-R, UPQC-S, and UPQC-VA. More than 150 papers on the topic are rigorously studied and meticulously classified to form these acronyms and are discussed in the paper.

620 citations


Cites background from "Summary of Distributed Resources Im..."

  • ...challenges to electrical power industry to accommodate them without violating standard requirements (such as, IEEE 1547, IEEE 519) [179]–[181]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a method of locating and sizing DG units so as to improve the voltage stability margin, where the authors formulated the DG unit placement and sizing as a mixed-integer nonlinear programming problem with an objective function of improving the stability margin.
Abstract: Recently, integration of distributed generation (DG) in distribution systems has increased to high penetration levels. The impact of DG units on the voltage stability margins has become significant. Optimization techniques are tools which can be used to locate and size the DG units in the system, so as to utilize these units optimally within certain limits and constraints. Thus, the impacts of DG units issues, such as voltage stability and voltage profile, can be analyzed effectively. The ultimate goal of this paper is to propose a method of locating and sizing DG units so as to improve the voltage stability margin. The load and renewable DG generation probabilistic nature are considered in this study. The proposed method starts by selecting candidate buses into which to install the DG units on the system, prioritizing buses which are sensitive to voltage profile and thus improve the voltage stability margin. The DG units' placement and sizing is formulated using mixed-integer nonlinear programming, with an objective function of improving the stability margin; the constraints are the system voltage limits, feeders' capacity, and the DG penetration level.

454 citations

Journal ArticleDOI
TL;DR: In this paper, a potential function is defined for each controllable unit of the micro-grid such that the minimum of the potential function corresponds to the control goal, and dynamic set points are updated, using communication within the microgrid.
Abstract: This paper introduces the potential-function based method for secondary (as well as tertiary) control of a microgrid, in both islanded and grid-connected modes. A potential function is defined for each controllable unit of the microgrid such that the minimum of the potential function corresponds to the control goal. The dynamic set points are updated, using communication within the microgrid. The proposed potential function method is applied for the secondary voltage control of two microgrids with single and multiple feeders. Both islanded and grid-connected modes are investigated. The studies are conducted in the time-domain, using the PSCAD/EMTDC software environment. The study results demonstrate feasibility of the proposed potential function method and viability of the secondary voltage control method for a microgrid.

437 citations

Journal ArticleDOI
25 Jul 2010
TL;DR: In this paper, the authors proposed a multi-period AC optimal power flow (OPF)-based technique for evaluating the maximum capacity of new variable distributed generation able to be connected to a distribution network when ANM control strategies are in place.
Abstract: Increasing connection of variable distributed generation, like wind power, to distribution networks requires new control strategies to provide greater flexibility and use of existing network assets. Active network management (ANM) will play a major role in this but there is a continuing need to demonstrate the benefit in facilitating connection of new generation without the need for traditional reinforcements. This paper proposes a multi-period AC optimal power flow (OPF)-based technique for evaluating the maximum capacity of new variable distributed generation able to be connected to a distribution network when ANM control strategies are in place. The ANM schemes embedded into the OPF include coordinated voltage control, adaptive power factor and energy curtailment. A generic U.K. medium voltage distribution network is analyzed using coincident demand and wind availability data derived from hourly time-series. Results clearly show that very high penetration levels of new variable generation capacity can be achieved by considering ANM strategies compared to the widely used passive operation (i.e., "fit and forget"). The effects on network losses are also discussed.

409 citations