scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Super-resolution image reconstruction: a technical overview

11 Jun 2003-IEEE Signal Processing Magazine (IEEE)-Vol. 20, Iss: 3, pp 21-36
TL;DR: The goal of this article is to introduce the concept of SR algorithms to readers who are unfamiliar with this area and to provide a review for experts to present the technical review of various existing SR methodologies which are often employed.
Abstract: A new approach toward increasing spatial resolution is required to overcome the limitations of the sensors and optics manufacturing technology. One promising approach is to use signal processing techniques to obtain an high-resolution (HR) image (or sequence) from observed multiple low-resolution (LR) images. Such a resolution enhancement approach has been one of the most active research areas, and it is called super resolution (SR) (or HR) image reconstruction or simply resolution enhancement. In this article, we use the term "SR image reconstruction" to refer to a signal processing approach toward resolution enhancement because the term "super" in "super resolution" represents very well the characteristics of the technique overcoming the inherent resolution limitation of LR imaging systems. The major advantage of the signal processing approach is that it may cost less and the existing LR imaging systems can be still utilized. The SR image reconstruction is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including medical imaging, satellite imaging, and video applications. The goal of this article is to introduce the concept of SR algorithms to readers who are unfamiliar with this area and to provide a review for experts. To this purpose, we present the technical review of various existing SR methodologies which are often employed. Before presenting the review of existing SR algorithms, we first model the LR image acquisition process.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a new approach to single-image superresolution, based upon sparse signal representation, which generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods.
Abstract: This paper presents a new approach to single-image superresolution, based upon sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low-resolution and high-resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low-resolution image patch can be applied with the high-resolution image patch dictionary to generate a high-resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs , reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution (SR) and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle SR with noisy inputs in a more unified framework.

4,958 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a mathematical theory of super-resolution, which is the problem of recovering the details of an object from coarse scale information only from samples at the low end of the spectrum.
Abstract: This paper develops a mathematical theory of super-resolution. Broadly speaking, superresolution is the problem of recovering the ne details of an object|the high end of its spectrum| from coarse scale information only|from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0; 1] and with unknown complex-valued amplitudes. We only observe Fourier samples of this object up until a frequency cut-o fc. We show that one can super-resolve these point sources with innite precision|i.e. recover the exact locations and amplitudes|by solving a simple convex optimization problem, which can essentially be reformulated as a semidenite program. This holds provided that the distance between sources is at least 2=fc. This result extends to higher dimensions and other models. In one dimension for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with innite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super-resolved signal is expected to degrade when both the noise level and the super-resolution factor vary.

1,157 citations

Journal ArticleDOI
TL;DR: The authors attempt to fill the gap by providing a critical description and extensive comparisons of some of the main state-of-the-art pansharpening methods by offering a detailed comparison of their performances with respect to the different instruments.
Abstract: Pansharpening aims at fusing a multispectral and a panchromatic image, featuring the result of the processing with the spectral resolution of the former and the spatial resolution of the latter. In the last decades, many algorithms addressing this task have been presented in the literature. However, the lack of universally recognized evaluation criteria, available image data sets for benchmarking, and standardized implementations of the algorithms makes a thorough evaluation and comparison of the different pansharpening techniques difficult to achieve. In this paper, the authors attempt to fill this gap by providing a critical description and extensive comparisons of some of the main state-of-the-art pansharpening methods. In greater details, several pansharpening algorithms belonging to the component substitution or multiresolution analysis families are considered. Such techniques are evaluated through the two main protocols for the assessment of pansharpening results, i.e., based on the full- and reduced-resolution validations. Five data sets acquired by different satellites allow for a detailed comparison of the algorithms, characterization of their performances with respect to the different instruments, and consistency of the two validation procedures. In addition, the implementation of all the pansharpening techniques considered in this paper and the framework used for running the simulations, comprising the two validation procedures and the main assessment indexes, are collected in a MATLAB toolbox that is made available to the community.

980 citations


Cites background from "Super-resolution image reconstructi..."

  • ...The former relies on the substitution of a component (e.g., obtained by means of a spectral transformation of the MS data) with the PAN image....

    [...]

Journal ArticleDOI
TL;DR: This paper shows how this denoising method is generalized to become a relatively simple super-resolution algorithm with no explicit motion estimation, and results show that the proposed method is very successful in providing super- resolution on general sequences.
Abstract: Super-resolution reconstruction proposes a fusion of several low-quality images into one higher quality result with better optical resolution. Classic super-resolution techniques strongly rely on the availability of accurate motion estimation for this fusion task. When the motion is estimated inaccurately, as often happens for nonglobal motion fields, annoying artifacts appear in the super-resolved outcome. Encouraged by recent developments on the video denoising problem, where state-of-the-art algorithms are formed with no explicit motion estimation, we seek a super-resolution algorithm of similar nature that will allow processing sequences with general motion patterns. In this paper, we base our solution on the Nonlocal-Means (NLM) algorithm. We show how this denoising method is generalized to become a relatively simple super-resolution algorithm with no explicit motion estimation. Results on several test movies show that the proposed method is very successful in providing super-resolution on general sequences.

845 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied, and establishing a framework for understanding the merits and relationships between the wide variety of existing techniques.
Abstract: Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors, or from different viewpoints. Virtually all large systems which evaluate images require the registration of images, or a closely related operation, as an intermediate step. Specific examples of systems where image registration is a significant component include matching a target with a real-time image of a scene for target recognition, monitoring global land usage using satellite images, matching stereo images to recover shape for autonomous navigation, and aligning images from different medical modalities for diagnosis.Over the years, a broad range of techniques has been developed for various types of data and problems. These techniques have been independently studied for several different applications, resulting in a large body of research. This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied. Three major types of variations are distinguished. The first type are the variations due to the differences in acquisition which cause the images to be misaligned. To register images, a spatial transformation is found which will remove these variations. The class of transformations which must be searched to find the optimal transformation is determined by knowledge about the variations of this type. The transformation class in turn influences the general technique that should be taken. The second type of variations are those which are also due to differences in acquisition, but cannot be modeled easily such as lighting and atmospheric conditions. This type usually effects intensity values, but they may also be spatial, such as perspective distortions. The third type of variations are differences in the images that are of interest such as object movements, growths, or other scene changes. Variations of the second and third type are not directly removed by registration, but they make registration more difficult since an exact match is no longer possible. In particular, it is critical that variations of the third type are not removed. Knowledge about the characteristics of each type of variation effect the choice of feature space, similarity measure, search space, and search strategy which will make up the final technique. All registration techniques can be viewed as different combinations of these choices. This framework is useful for understanding the merits and relationships between the wide variety of existing techniques and for assisting in the selection of the most suitable technique for a specific problem.

4,769 citations


"Super-resolution image reconstructi..." refers background in this paper

  • ...The estimation of motion information is referred to as registration, and it is extensively studied in various fields of image processing [67]-[70]....

    [...]

Journal ArticleDOI
TL;DR: A unifying characterization of various regularization methods is given and it is shown that the measurement of “size” is dependent on the particular regularization method chosen, and a new method is proposed for choosing the regularization parameter based on the L-curve.
Abstract: Regularization algorithms are often used to produce reasonable solutions to ill-posed problems. The L-curve is a plot—for all valid regularization parameters—of the size of the regularized solution versus the size of the corresponding residual. Two main results are established. First a unifying characterization of various regularization methods is given and it is shown that the measurement of “size” is dependent on the particular regularization method chosen. For example, the 2-norm is appropriate for Tikhonov regularization, but a 1-norm in the coordinate system of the singular value decomposition (SVD) is relevant to truncated SVD regularization. Second, a new method is proposed for choosing the regularization parameter based on the L-curve, and it is shown how this method can be implemented efficiently. The method is compared to generalized cross validation and this new method is shown to be more robust in the presence of correlated errors.

2,841 citations


"Super-resolution image reconstructi..." refers methods in this paper

  • ...[19] pointed to the important role of the regularization parameter and a proposed CLS SR reconstruction which generates the optimum value of the regularization parameter, using the L-curve method [77]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the relative displacements in image sequences are known accurately, and some knowledge of the imaging process is available, and the proposed approach is similar to back-projection used in tomography.

2,081 citations


"Super-resolution image reconstructi..." refers background or methods in this paper

  • ...Iterative Back-Projection Approach Irani and Peleg [31] formulated the iterative back-projection (IBP) SR reconstruction approach that is similar to the back projection used in tomography....

    [...]

  • ...A color SR application is considered in [8], [31], and [52]-[55], but a more careful reconstruction method which reflects the characteristic of color is needed....

    [...]

  • ...Later, Irani and Peleg [33] modified the IBP to consider a more general motion model....

    [...]

  • ...In [31], it is pointed out that the choice of h affects the characteristics of the solution when there are possible solutions....

    [...]

  • ...Irani and Peleg [31] formulated the iterative back-projection (IBP) SR reconstruction approach that is similar to the back projection used in tomography....

    [...]

Book
16 Nov 2012
TL;DR: The article introduces digital image restoration to the reader who is just beginning in this field, and provides a review and analysis for the readers who may already be well-versed in image restoration.
Abstract: The article introduces digital image restoration to the reader who is just beginning in this field, and provides a review and analysis for the reader who may already be well-versed in image restoration. The perspective on the topic is one that comes primarily from work done in the field of signal processing. Thus, many of the techniques and works cited relate to classical signal processing approaches to estimation theory, filtering, and numerical analysis. In particular, the emphasis is placed primarily on digital image restoration algorithms that grow out of an area known as "regularized least squares" methods. It should be noted, however, that digital image restoration is a very broad field, as we discuss, and thus contains many other successful approaches that have been developed from different perspectives, such as optics, astronomy, and medical imaging, just to name a few. In the process of reviewing this topic, we address a number of very important issues in this field that are not typically discussed in the technical literature.

1,588 citations

Journal ArticleDOI
TL;DR: A hybrid method combining the simplicity of theML and the incorporation of nonellipsoid constraints is presented, giving improved restoration performance, compared with the ML and the POCS approaches.
Abstract: The three main tools in the single image restoration theory are the maximum likelihood (ML) estimator, the maximum a posteriori probability (MAP) estimator, and the set theoretic approach using projection onto convex sets (POCS). This paper utilizes the above known tools to propose a unified methodology toward the more complicated problem of superresolution restoration. In the superresolution restoration problem, an improved resolution image is restored from several geometrically warped, blurred, noisy and downsampled measured images. The superresolution restoration problem is modeled and analyzed from the ML, the MAP, and POCS points of view, yielding a generalization of the known superresolution restoration methods. The proposed restoration approach is general but assumes explicit knowledge of the linear space- and time-variant blur, the (additive Gaussian) noise, the different measured resolutions, and the (smooth) motion characteristics. A hybrid method combining the simplicity of the ML and the incorporation of nonellipsoid constraints is presented, giving improved restoration performance, compared with the ML and the POCS approaches. The hybrid method is shown to converge to the unique optimal solution of a new definition of the optimization problem. Superresolution restoration from motionless measurements is also discussed. Simulations demonstrate the power of the proposed methodology.

1,174 citations


"Super-resolution image reconstructi..." refers background or methods in this paper

  • ...Assuming that each LR image is corrupted by additive noise, we can then represent the observation model as [30], [48]...

    [...]

  • ...Elad and Feuer [30] proposed a general hybrid SR image reconstruction algorithm which combines the benefits of the stochastic approaches and the POCS approach....

    [...]

  • ...Elad and Feuer [30] demonstrated that the motionless SR image reconstruction without a regularization term is possible if the following necessary condition is satisfied: { }L m p2 22 1 2≤ + −min ( ) , , (20) where ( ) ( )2 1 2 1m m+ × + is the size of the blurring kernel, and L L L1 2= = ....

    [...]

  • ...Elad and Feuer [34] proposed an SR image reconstruction algorithm based on adaptive filtering theory applied in time axis....

    [...]

  • ...Elad and Feuer [30] demonstrated that the motionless SR image reconstruction without a regularization term is possible if the following necessary condition is satisfied:...

    [...]