scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Superhydrophilic nickel cyclotetraphosphate for the hydrogen evolution reaction in acidic solution

21 Sep 2021-Dalton Transactions (The Royal Society of Chemistry)-Vol. 50, Iss: 36, pp 12435-12439
TL;DR: Nickel cyclotetraphosphate grown on carbon cloth (Ni2P4O12/CC) is synthesized via an anion exchange reaction method and it shows excellent hydrogen evolution reaction (HER) activity and strong working stability in acid due to the merits of its unique polymer-like structure, mesoporous characteristics, and superhydrophilic surface as mentioned in this paper.
Abstract: Nickel cyclotetraphosphate grown on carbon cloth (Ni2P4O12/CC) is synthesized via an anion exchange reaction method and it shows excellent hydrogen evolution reaction (HER) activity and strong working stability in acid due to the merits of its unique polymer-like structure, mesoporous characteristics, and superhydrophilic surface.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors classify the latest research on cobalt-based catalysts according to the types of compound, including cobaltbased sulfides, phosphides, carbides, borides, oxides, etc.
Abstract: Hydrogen (H2) is a new type of renewable energy that can meet people's growing energy needs and is environmentally friendly. In order to improve the industrial application prospects and electrochemical performance of hydrogen evolution catalysts, extensive research on transition metal materials has been carried out. Among the many catalytic materials, cobalt is an element with potential for the hydrogen evolution reaction (HER) due to its abundant reserves, low cost, and small energy barrier for H adsorption. This review classifies the latest research on cobalt-based catalysts according to the types of compound, including cobalt-based sulfides, phosphides, carbides, borides, oxides, etc., and summarizes the latest research progress of cobalt-based compound catalysts in acidic and alkaline media. Strategies to tune the properties of cobalt-based compound catalysts for high catalytic activity for HER are focused on, including structural engineering, defect engineering, and doping, etc. The advantages and limitations of each modified approach are reviewed. Not only that, but also the catalytic activity and advantages of the catalyst are evaluated by using density functional theory (DFT) calculation-related descriptors, activity evaluation parameters, etc. Finally, limitations and challenges of cobalt-based materials for HER are presented, as well as prospects for future research. This paper aims to understand the chemical and physical factors that affect cobalt-based catalysts, and to find directions for future research on cobalt-based catalysts.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the impact of Ni-based materials in hydrogen production through electro and photocatalytic water splitting process is explored, and the desired features of electro/photocatalyst and factors controlling their activity are demonstrated citing examples.
Journal ArticleDOI
TL;DR: In this paper , a nitrogen-doped right-chiral carbon nanotubes @ porous Ni-Fe alloy nanoparticles (NPs) were used to obtain high electrocatalytic performance in oxygen evolution and hydrogen evolution reactions.
References
More filters
Journal ArticleDOI
TL;DR: An efficient approach to construct one-dimensional metal/sulfide heterostructures by directly sulfuring highly composition-segregated platinum-nickel nanowires is reported, highlighting a potentially powerful interface-engineering strategy for designing multicomponent heterostructure with advanced performance in hydrogen evolution reaction and beyond.
Abstract: Comprising abundant interfaces, multicomponent heterostructures can integrate distinct building blocks into single entities and yield exceptional functionalities enabled by the synergistic components. Here we report an efficient approach to construct one-dimensional metal/sulfide heterostructures by directly sulfuring highly composition-segregated platinum-nickel nanowires. The heterostructures possess a high density of interfaces between platinum-nickel and nickel sulfide components, which cooperate synergistically towards alkaline hydrogen evolution reaction. The platinum-nickel/nickel sulfide heterostructures can deliver a current density of 37.2 mA cm−2 at an overpotential of 70 mV, which is 9.7 times higher than that of commercial Pt/C. The heterostructures also offer enhanced stability revealed by long-term chronopotentiometry measurements. The present work highlights a potentially powerful interface-engineering strategy for designing multicomponent heterostructures with advanced performance in hydrogen evolution reaction and beyond. Multicomponent, nanoscale heterostructures may exhibit notable catalytic properties imparted by the various building blocks. Here, the authors fabricate metal/sulfide heterostructures via direct sulfurization of segregated platinum-nickel nanowires, and assess their hydrogen evolution performance.

621 citations

Journal ArticleDOI
TL;DR: A new crystal structure is identified, Mn3(PO4)2·3H2O, that precipitates spontaneously in aqueous solution at room temperature and is demonstrated to have high catalytic performance under neutral conditions.
Abstract: The development of a water oxidation catalyst has been a demanding challenge in realizing water splitting systems. The asymmetric geometry and flexible ligation of the biological Mn4CaO5 cluster are important properties for the function of photosystem II, and these properties can be applied to the design of new inorganic water oxidation catalysts. We identified a new crystal structure, Mn3(PO4)2·3H2O, that precipitates spontaneously in aqueous solution at room temperature and demonstrated its high catalytic performance under neutral conditions. The bulky phosphate polyhedron induces a less-ordered Mn geometry in Mn3(PO4)2·3H2O. Computational analysis indicated that the structural flexibility in Mn3(PO4)2·3H2O could stabilize the Jahn–Teller-distorted Mn(III) and thus facilitate Mn(II) oxidation. This study provides valuable insights into the interplay between atomic structure and catalytic activity.

295 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent publications with critical insight into the advances of iron-based phosphides as HER electrocatalysts, and they point out several challenges and prospects, which can open up opportunities to design next-generation FeP HER catalysts.
Abstract: Electrochemical water splitting is the most promising process to produce carbon-neutral hydrogen as an energy carrier, and hydrogen evolution reaction (HER) electrocatalysts are essential to reduce the energy barrier and improve hydrogen production efficiency. This driving force necessitates the design of HER electrocatalysts with low-cost, high-abundance, high activity and stability. In this review, we systemically summarize recent publications with critical insight into the advances of iron-based phosphides as HER electrocatalysts. Various synthesis strategies corresponding to different phosphating strategies for guiding iron phosphide design are described, followed by illustrations of how to boost FeP HER catalytic performance by enriching the accessible active sites and modifying the electronic structure. Finally, we point out several challenges and prospects, which can open up opportunities to design next-generation FeP HER electrocatalysts.

282 citations

Journal ArticleDOI
TL;DR: A robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale that satisfies the criteria for large-scale commercialization of water–alkali electrolyzers is reported.
Abstract: Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm 2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel–iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm 2 at an overpotential of 177 mV, 500 mA/cm 2 at only 265 mV, and 1,705 mA/cm 2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO 2 catalyst.

281 citations

Journal ArticleDOI
TL;DR: A new member of phosphate electrocatalysts, nickel metaphosphate (Ni2 P4 O12 ) nanocrystals, is reported, exhibiting low overpotential of 270 mV to generate the current density of 10 mA cm-2 and a superior catalytic durability of 100 h.
Abstract: High-performance electrocatalysts are desired for electrochemical energy conversion, especially in the field of water splitting. Here, a new member of phosphate electrocatalysts, nickel metaphosphate (Ni2 P4 O12 ) nanocrystals, is reported, exhibiting low overpotential of 270 mV to generate the current density of 10 mA cm-2 and a superior catalytic durability of 100 h. It is worth noting that Ni2 P4 O12 electrocatalyst has remarkable oxygen evolution performance operating in basic media. Further experimental and theoretical analyses demonstrate that N dopant boosts the catalytic performance of Ni2 P4 O12 due to optimizing the surface electronic structure for better charge transfer and decreasing the adsorption energy for the oxygenic intermediates.

155 citations