scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Superoxide generation by complex III: from mechanistic rationales to functional consequences.

01 Nov 2013-Biochimica et Biophysica Acta (Biochim Biophys Acta)-Vol. 1827, Iss: 11, pp 1320-1331
TL;DR: This review is intended to bridge the gap between mechanistic studies and investigations on complex III ROS in cellular signal transduction and highlights factors that impact superoxide generation.
About: This article is published in Biochimica et Biophysica Acta.The article was published on 2013-11-01 and is currently open access. It has received 285 citations till now. The article focuses on the topics: Mitochondrial ROS & Coenzyme Q – cytochrome c reductase.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke is highlighted and the balance ROS signaling plays in both physiology and pathophysiology is understood.
Abstract: Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.

1,011 citations

Journal ArticleDOI
TL;DR: The most challenging contemporary questions in the field of plant ROS biology are outlined and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals is outlined.
Abstract: As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.

744 citations

Journal ArticleDOI
TL;DR: Novel therapeutic approaches that selectively target mROS production to reduce postischemic tissue injury may prove efficacious in limiting myocardial dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke.
Abstract: Reductions in the blood supply produce considerable injury if the duration of ischemia is prolonged. Paradoxically, restoration of perfusion to ischemic organs can exacerbate tissue damage and extend the size of an evolving infarct. Being highly metabolic organs, the heart and brain are particularly vulnerable to the deleterious effects of ischemia/reperfusion (I/R). While the pathogenetic mechanisms contributing to I/R-induced tissue injury and infarction are multifactorial, the relative importance of each contributing factor remains unclear. However, an emerging body of evidence indicates that the generation of reactive oxygen species (ROS) by mitochondria plays a critical role in damaging cellular components and initiating cell death. In this review, we summarize our current understanding of the mechanisms whereby mitochondrial ROS generation occurs in I/R and contributes to myocardial infarction and stroke. In addition, mitochondrial ROS have been shown to participate in preconditioning by several pharmacologic agents that target potassium channels (e.g., ATP-sensitive potassium (mKATP) channels or large conductance, calcium-activated potassium (mBKCa) channels) to activate cell survival programs that render tissues and organs more resistant to the deleterious effects of I/R. Finally, we review novel therapeutic approaches that selectively target mROS production to reduce postischemic tissue injury, which may prove efficacious in limiting myocardial dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke.

564 citations

Journal ArticleDOI
08 Oct 2015-Cell
TL;DR: An antioxidant role for lipid droplets is revealed that could be relevant in many different biological contexts and involves diverting PUFAs, including diet-derived linoleic acid, away from membranes to the core of lipid Droplets, where they are less vulnerable to peroxidation.

409 citations


Additional excerpts

  • ...in a Stem Cell Niche of Drosophila...

    [...]

Journal ArticleDOI
TL;DR: This work summarizes how hypoxia conditions mitochondria with consequences for ROS-production and the HIF-pathway is summarized.
Abstract: Hypoxia triggers several mechanisms to adapt cells to a low oxygen environment. Mitochondria are major consumers of oxygen and a potential source of reactive oxygen species (ROS). In response to hypoxia they exchange or modify distinct subunits of the respiratory chain and adjust their metabolism, especially lowering the citric acid cycle. Intermediates of the citric acid cycle participate in regulating hypoxia inducible factors (HIF), the key mediators of adaptation to hypoxia. Here we summarize how hypoxia conditions mitochondria with consequences for ROS-production and the HIF-pathway.

351 citations


Cites background from "Superoxide generation by complex II..."

  • ...Complexes I, II, and III of the respiratory chain are shown to release O2 - either into the matrix (CI, CII, CIII) or into the intermembrane space (CIII) [11]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The demonstration that O2·- can reduce ferricytochrome c and tetranitromethane, and that superoxide dismutase, by competing for the superoxide radicals, can markedly inhibit these reactions, is demonstrated.

12,468 citations

Journal ArticleDOI
TL;DR: The description outlined here facilitates the understanding of factors that favour mitochondrial ROS production and develops better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
Abstract: The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2•−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2•− production within the matrix of mammalian mitochondria. The flux of O2•− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2•− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2•− production is far lower. The generation of O2•− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2•− generation by mitochondria in vivo from O2•−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.

6,371 citations

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations

Journal ArticleDOI
TL;DR: This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments and discusses various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants.
Abstract: The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2−•). Even though O2−• is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants.

4,282 citations

Journal ArticleDOI
TL;DR: It is postulated that in addition to the well-known flavin reaction, formation of H( 2)O(2) may be due to interaction with an energy-dependent component of the respiratory chain at the cytochrome b level.
Abstract: 1. Pigeon heart mitochondria produce H(2)O(2) at a maximal rate of about 20nmol/min per mg of protein. 2. Succinate-glutamate and malate-glutamate are substrates which are able to support maximal H(2)O(2) production rates. With malate-glutamate, H(2)O(2) formation is sensitive to rotenone. Endogenous substrate, octanoate, stearoyl-CoA and palmitoyl-carnitine are by far less efficient substrates. 3. Antimycin A exerts a very pronounced effect in enhancing H(2)O(2) production in pigeon heart mitochondria; 0.26nmol of antimycin A/mg of protein and the addition of an uncoupler are required for maximal H(2)O(2) formation. 4. In the presence of endogenous substrate and of antimycin A, ATP decreases and uncoupler restores the rates of H(2)O(2) formation. 5. Reincorporation of ubiquinone-10 and ubiquinone-3 to ubiquinone-depleted pigeon heart mitochondria gives a system in which H(2)O(2) production is linearly related to the incorporated ubiquinone. 6. The generation of H(2)O(2) by pigeon heart mitochondria in the presence of succinate-glutamate and in metabolic state 4 has an optimum pH value of 7.5. In states 1 and 3u, and in the presence of antimycin A and uncoupler, the optimum pH value is shifted towards more alkaline values. 7. With increase of the partial pressure of O(2) to the hyperbaric region the formation of H(2)O(2) is markedly increased in pigeon heart mitochondria and in rat liver mitochondria. With rat liver mitochondria and succinate as substrate in state 4, an increase in the pO(2) up to 1.97MPa (19.5atm) increases H(2)O(2) formation 10-15-fold. Similar pO(2) profiles were observed when rat liver mitochondria were supplemented either with antimycin A or with antimycin A and uncoupler. No saturation of the system with O(2) was observed up to 1.97MPa (19.5atm). By increasing the pO(2) to 1.97MPa (19.5atm), H(2)O(2) formation in pigeon heart mitochondria with succinate as substrate increased fourfold in metabolic state 4, with antimycin A added the increase was threefold and with antimycin A and uncoupler it was 2.5-fold. In the last two saturation of the system with oxygen was observed, with an apparent K(m) of about 71kPa (0.7-0.8atm) and a V(max.) of 12 and 20nmol of H(2)O(2)/min per mg of protein. 8. It is postulated that in addition to the well-known flavin reaction, formation of H(2)O(2) may be due to interaction with an energy-dependent component of the respiratory chain at the cytochrome b level.

2,535 citations