scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Supersymmetric Dark Matter

TL;DR: In this article, the neutralino is considered as a superpartner in many supersymmetric theories, and the cosmological abundance of neutralino and the event rates for both direct and indirect detection schemes are discussed.
Abstract: There is almost universal agreement among astronomers that most of the mass in the Universe and most of the mass in the Galactic halo is dark. Many lines of reasoning suggest that the dark matter consists of some new, as yet undiscovered, weakly-interacting massive particle (WIMP). There is now a vast experimental effort being surmounted to detect WIMPS in the halo. The most promising techniques involve direct detection in low-background laboratory detectors and indirect detection through observation of energetic neutrinos from annihilation of WIMPs that have accumulated in the Sun and/or the Earth. Of the many WIMP candidates, perhaps the best motivated and certainly the most theoretically developed is the neutralino, the lightest superpartner in many supersymmetric theories. We review the minimal supersymmetric extension of the Standard Model and discuss prospects for detection of neutralino dark matter. We review in detail how to calculate the cosmological abundance of the neutralino and the event rates for both direct- and indirect-detection schemes, and we discuss astrophysical and laboratory constraints on supersymmetric models. We isolate and clarify the uncertainties from particle physics, nuclear physics, and astrophysics that enter at each step in the calculation. We briefly review other related dark-matter candidates and detection techniques.
Citations
More filters
Journal ArticleDOI
TL;DR: The current status of particle dark matter, including experimental evidence and theoretical motivations, including direct and indirect detection techniques, is discussed in this paper. But the authors focus on neutralinos in models of supersymmetry and Kaluza-Klein dark matter in universal extra dimensions.

4,614 citations

Journal ArticleDOI
TL;DR: The Illustris Project as mentioned in this paper is a series of large-scale hydrodynamical simulations of galaxy formation, which includes primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei.
Abstract: We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of (106.5 Mpc)^3, has a dark mass resolution of 6.26 × 10^6 M_⊙, and an initial baryonic matter mass resolution of 1.26 × 10^6 M_⊙. At z = 0 gravitational forces are softened on scales of 710 pc, and the smallest hydrodynamical gas cells have an extent of 48 pc. We follow the dynamical evolution of 2 × 1820^3 resolution elements and in addition passively evolve 1820^3 Monte Carlo tracer particles reaching a total particle count of more than 18 billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. Here we describe the simulation suite, and contrast basic predictions of our model for the present-day galaxy population with observations of the local universe. At z = 0 our simulation volume contains about 40 000 well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at z = 0. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disc galaxies obeys the stellar and baryonic Tully–Fisher relation together with flat circular velocity curves. In the well-resolved regime, the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.

2,012 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically review some standard issues and also the latest developments of modified gravity in cosmology, emphasizing on inflation, bouncing cosmology and late-time acceleration era.

1,950 citations

Journal ArticleDOI
TL;DR: In this article, the neutralino is proposed as the lightest superpartner in many supersymmetric theories, and it is shown how to calculate the cosmological abundance of neutralino and event rates for both direct and indirect detection schemes.

1,670 citations

Journal ArticleDOI
Markus Ackermann, Andrea Albert1, Brandon Anderson2, W. B. Atwood3, Luca Baldini1, Guido Barbiellini4, Denis Bastieri4, Keith Bechtol5, Ronaldo Bellazzini4, Elisabetta Bissaldi4, Roger Blandford1, E. D. Bloom1, R. Bonino4, Eugenio Bottacini1, T. J. Brandt6, Johan Bregeon7, P. Bruel8, R. Buehler, G. A. Caliandro1, R. A. Cameron1, R. Caputo3, M. Caragiulo4, P. A. Caraveo9, C. Cecchi4, Eric Charles1, A. Chekhtman10, James Chiang1, G. Chiaro11, Stefano Ciprini4, R. Claus1, Johann Cohen-Tanugi7, Jan Conrad2, Alessandro Cuoco4, S. Cutini4, Filippo D'Ammando9, A. De Angelis4, F. de Palma4, R. Desiante4, Seth Digel1, L. Di Venere12, Persis S. Drell1, Alex Drlica-Wagner13, R. Essig14, C. Favuzzi4, S. J. Fegan8, Elizabeth C. Ferrara6, W. B. Focke1, A. Franckowiak1, Yasushi Fukazawa15, Stefan Funk, P. Fusco4, F. Gargano4, Dario Gasparrini4, Nicola Giglietto4, Francesco Giordano4, Marcello Giroletti9, T. Glanzman1, G. Godfrey1, G. A. Gomez-Vargas4, I. A. Grenier16, Sylvain Guiriec6, M. Gustafsson17, E. Hays6, John W. Hewitt18, D. Horan8, T. Jogler1, Gudlaugur Johannesson19, M. Kuss4, Stefan Larsson2, Luca Latronico4, Jingcheng Li20, L. Li2, M. Llena Garde2, Francesco Longo4, F. Loparco4, P. Lubrano4, D. Malyshev1, M. Mayer, M. N. Mazziotta4, Julie McEnery6, Manuel Meyer2, Peter F. Michelson1, Tsunefumi Mizuno15, A. A. Moiseev21, M. E. Monzani1, A. Morselli4, S. Murgia22, E. Nuss7, T. Ohsugi15, M. Orienti9, E. Orlando1, J. F. Ormes23, David Paneque1, J. S. Perkins6, Melissa Pesce-Rollins1, F. Piron7, G. Pivato4, T. A. Porter1, S. Rainò4, R. Rando4, M. Razzano4, A. Reimer1, Olaf Reimer1, Steven Ritz3, Miguel A. Sánchez-Conde2, André Schulz, Neelima Sehgal24, Carmelo Sgrò4, E. J. Siskind, F. Spada4, Gloria Spandre4, P. Spinelli4, Louis E. Strigari25, Hiroyasu Tajima1, Hiromitsu Takahashi15, J. B. Thayer1, L. Tibaldo1, Diego F. Torres20, Eleonora Troja6, Giacomo Vianello1, Michael David Werner, Brian L Winer26, K. S. Wood27, Matthew Wood1, Gabrijela Zaharijas4, Stephan Zimmer2 
TL;DR: In this article, the authors report on γ-ray observations of the Milky-Way satellite galaxies (dSphs) based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis.
Abstract: The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ-lepton channels.

1,166 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that no CP-violating interactions exist in the quartet scheme without introducing any other new fields, and that the strong interaction must be chiral SU ( 4) X SU( 4) invariant as precisely as the conservation of the third component of the iso-spin.
Abstract: In a framework of the renormalizable theory of weak interaction, problems of CP-violation are studied. It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields. Some possible models of CP-violation are also discussed. When we apply the renormalizable theory of weak interaction1l to the hadron system, we have some limitations on the hadron model. It is well known that there exists, in the case of the triplet model, a difficulty of the strangeness chang­ ing neutral current and that the quartet model is free from this difficulty. Fur­ thermore, Maki and one of the present authors (T.M.) have shown2l that, in the latter case, the strong interaction must be chiral SU ( 4) X SU ( 4) invariant as precisely as the conservation of the third component of the iso-spin 13 • In addi­ tion to these arguments, for the theory to be realistic, CP-violating interactions should be incorporated in a gauge invariant way. This requirement will impose further limitations on the hadron model and the CP-violating interaction itself. The purpose of the present paper is to investigate this problem. In the following, it will be shown that in the case of the above-mentioned quartet model, we cannot make a CP-violating interaction without introducing any other new fields when we require the following conditions: a) The mass of the fourth member of the quartet, which we will call (, is sufficiently large, b) the model should be con­ sistent with our well-established knowledge of the semi-leptonic processes. After that some possible ways of bringing CP-violation into the theory will be discussed. We consider the quartet model with a charge assignment of Q, Q -1, Q -1 and Q for p, n, A. and (, respectively, and we take the same underlying gauge group SUweak (2) X SU(1) and the scalar doublet field cp as those of Weinberg's original model.1l Then, hadronic parts of the Lagrangian can be devided in the following way:

5,389 citations

Journal ArticleDOI

5,265 citations

Journal ArticleDOI
TL;DR: In this paper, the weak and electromagnetic interactions of leptons are examined under the hypothesis that the weak interactions are mediated by vector bosons, and it is shown that the simplest partially-symmetric model reproducing the observed electromagnetic and weak interactions requires the existence of at least four vector-boson fields (including the photon).

4,387 citations

Journal ArticleDOI
Nicola Cabibbo1
TL;DR: In this article, an analysis of leptonic decays based on unitary symmetry for strong interactions and the V-A theory for weak interactions is presented, and an explanation for the observed predominance of the LAMBDA yields + e/sup -/ + nu decay over the lamBDA /sup −/ yields n + e /sup + n decay.
Abstract: An analysis of leptonic decays based on unitary symmetry for strong interactions (eightfold way) and the V-A theory for weak interactions is presented. An explanation for the observed predominance of the LAMBDA yields + e/sup -/ + nu decay over the LAMBDA /sup -/ yields n + e/sup -/ + nu decay is obtained. Branching ratios predicted for electron modes with DELTA S, 1 are presented; the ratios for the above decays agree well with experimental results. (D.C.W.)

3,957 citations

Journal ArticleDOI
TL;DR: In this paper, strong, electromagnetic, and weak forces are conjectured to arise from a single fundamental interaction based on the gauge group SU(5), which is known as SU(4).
Abstract: Strong, electromagnetic, and weak forces are conjectured to arise from a single fundamental interaction based on the gauge group SU(5).

3,684 citations