scispace - formally typeset
Search or ask a question

Supporting Online Material for Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex

TL;DR: The conjunction of positional, directional, and translational information in a single MEC cell type may enable grid coordinates to be updated during self-motion–based navigation.
Abstract: Grid cells in the medial entorhinal cortex (MEC) are part of an environment-independent spatial coordinate system. To determine how information about location, direction, and distance is integrated in the grid-cell network, we recorded from each principal cell layer of MEC in rats that explored two-dimensional environments. Whereas layer II was predominated by grid cells, grid cells colocalized with head-direction cells and conjunctive grid × head-direction cells in the deeper layers. All cell types were modulated by running speed. The conjunction of positional, directional, and translational information in a single MEC cell type may enable grid coordinates to be updated during self-motion–based navigation.
Citations
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Xiao Jing Wang1
TL;DR: A plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention, and implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Abstract: Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.

1,774 citations


Cites background from "Supporting Online Material for Conj..."

  • ...Indeed, these “grid cells” fire whenever the rat is on any vertex of a triangular lattice spanning the whole surface of the environment (400, 703, 843)....

    [...]

Journal ArticleDOI
TL;DR: Theoretical studies suggest that the medial entorhinal cortex might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation.
Abstract: The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.

1,747 citations


Cites background from "Supporting Online Material for Conj..."

  • ...Grid orientation and scale at a given dorsoventral position is consistent across all layers of the ME...

    [...]

Journal ArticleDOI
TL;DR: How place cells and grid cells may form the basis for quantitative spatiotemporal representation of places, routes, and associated experiences during behavior and in memory is reviewed.
Abstract: More than three decades of research have demonstrated a role for hippocampal place cells in representation of the spatial environment in the brain. New studies have shown that place cells are part of a broader circuit for dynamic representation of self-location. A key component of this network is the entorhinal grid cells, which, by virtue of their tessellating firing fields, may provide the elements of a path integration-based neural map. Here we review how place cells and grid cells may form the basis for quantitative spatiotemporal representation of places, routes, and associated experiences during behavior and in memory. Because these cell types have some of the most conspicuous behavioral correlates among neurons in nonsensory cortical systems, and because their spatial firing structure reflects computations internally in the system, studies of entorhinal-hippocampal representations may offer considerable insight into general principles of cortical network dynamics.

1,641 citations


Cites background from "Supporting Online Material for Conj..."

  • ...Axons from the presubiculum terminate in layers III and V of MEC (Witter & Amaral 2004), where grid cells are modulated by head direction (Sargolini et al. 2006b), possibly as a consequence of the presubicular input....

    [...]

  • ...The MEC has strong connections with the parasubiculum and the retrosplenial cortex (Witter & Amaral 2004), which contain cells that are tuned to position or head direction (Chen et al. 1994, Taube 1995, Sargolini et al. 2006a)....

    [...]

  • ...The system has access to direction and speed information required to transform the representation during movement (Sargolini et al. 2006b)....

    [...]

  • ...Sargolini et al. (2006b) have identified neurons with such properties....

    [...]

Journal ArticleDOI
05 Sep 2008-Science
TL;DR: It is hypothesize that neuronal representations, evolved for encoding distance in spatial navigation, also support episodic recall and the planning of action sequences.
Abstract: A long-standing conjecture in neuroscience is that aspects of cognition depend on the brain's ability to self-generate sequential neuronal activity. We found that reliably and continually changing cell assemblies in the rat hippocampus appeared not only during spatial navigation but also in the absence of changing environmental or body-derived inputs. During the delay period of a memory task, each moment in time was characterized by the activity of a particular assembly of neurons. Identical initial conditions triggered a similar assembly sequence, whereas different conditions gave rise to different sequences, thereby predicting behavioral choices, including errors. Such sequences were not formed in control (nonmemory) tasks. We hypothesize that neuronal representations, evolved for encoding distance in spatial navigation, also support episodic recall and the planning of action sequences.

1,137 citations

References
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Book
01 Jan 1981

4,608 citations

Journal ArticleDOI
TL;DR: Introduction to cognitive PDF heidegger and cognitive science PDF group cognitive therapy Group cognitive therapy for addictions handbook of brief cognitive behavioral therapy gurwitschs relevancy for cognitive science, and imagery creativity and discovery a cognitive perspective.

3,876 citations

Journal ArticleDOI
11 Aug 2005-Nature
TL;DR: The dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment, whose key unit is the ‘grid cell’, which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment.
Abstract: The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.

3,445 citations

Journal ArticleDOI
01 Apr 1997-Brain
TL;DR: The modular organization of nervous systems is a widely documented principle of design for both vertebrate and invertebrate brains of which the columnar organization of the neocortex is an example.
Abstract: The modular organization of nervous systems is a widely documented principle of design for both vertebrate and invertebrate brains of which the columnar organization of the neocortex is an example. The classical cytoarchitectural areas of the neocortex are composed of smaller units, local neural circuits repeated iteratively within each area. Modules may vary in cell type and number, in internal and external connectivity, and in mode of neuronal processing between different large entities; within any single large entity they have a basic similarity of internal design and operation. Modules are most commonly grouped into entities by sets of dominating external connections. This unifying factor is most obvious for the heterotypical sensory and motor areas of the neocortex. Columnar defining factors in homotypical areas are generated, in part, within the cortex itself. The set of all modules composing such an entity may be fractionated into different modular subsets by different extrinsic connections. Linkages between them and subsets in other large entities form distributed systems. The neighborhood relations between connected subsets of modules in different entities result in nested distributed systems that serve distributed functions. A cortical area defined in classical cytoarchitectural terms may belong to more than one and sometimes to several distributed systems. Columns in cytoarchitectural areas located at some distance from one another, but with some common properties, may be linked by long-range, intracortical connections.

2,134 citations