scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Surface-Enhanced Raman Spectroscopy

01 Sep 2005-Analytical Chemistry (American Chemical Society)-Vol. 77, Iss: 17
TL;DR: The use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates is described and progress in applying SERS to the detection of chemical warfare agents and several biological molecules is described.
Abstract: The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.
Citations
More filters
Journal ArticleDOI
TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Abstract: Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

5,444 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations

Journal ArticleDOI
TL;DR: In this article, a review of the photo and electron properties of carbon nanodots is presented to provide further insight into their controversial emission origin and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.
Abstract: Carbon nanodots (C-dots) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. In this review, by introducing the synthesis and photo- and electron-properties of C-dots, we hope to provide further insight into their controversial emission origin (particularly the upconverted photoluminescence) and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.

2,262 citations

Journal ArticleDOI
TL;DR: Chemical applications of SERS cover a broad range of topics such as catalysis and spectroelectrochemistry, single-molecule detection, and (bio)analytical chemistry.
Abstract: Surface-enhanced Raman scattering (SERS) has become a mature vibrational spectroscopic technique during the last decades and the number of applications in the chemical, material, and in particular life sciences is rapidly increasing. This Review explains the basic theory of SERS in a brief tutorial and-based on original results from recent research-summarizes fundamental aspects necessary for understanding SERS and provides examples for the preparation of plasmonic nanostructures for SERS. Chemical applications of SERS are the centerpiece of this Review. They cover a broad range of topics such as catalysis and spectroelectrochemistry, single-molecule detection, and (bio)analytical chemistry.

1,817 citations

References
More filters
Book
01 Jan 1983
TL;DR: In this paper, a Potpourri of Particles is used to describe surface modes in small Particles and the Angular Dependence of Scattering is shown to be a function of the size of the particles.
Abstract: BASIC THEORY. Electromagnetic Theory. Absorption and Scattering by an Arbitrary Particle. Absorption and Scattering by a Sphere. Particles Small Compared with the Wavelength. Rayleigh--Gans Theory. Geometrical Optics. A Potpourri of Particles. OPTICAL PROPERTIES OF BULK MATTER. Classical Theories of Optical Constants. Measured Optical Properties. OPTICAL PROPERTIES OF PARTICLES. Extinction. Surface Modes in Small Particles. Angular Dependence of Scattering. A Miscellany of Applications. Appendices. References. Index.

16,859 citations

Book
31 May 1995
TL;DR: This paper presents background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology, and the proposed three-dimensional Yee algorithm for solving these equations.
Abstract: Part 1 Reinventing electromagnetics: background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology. Part 2 The one-dimensional scalar wave equation: propagating wave solutions finite-difference approximation of the scalar wave equation dispersion relations for the one-dimensional wave equation numerical group velocity numerical stability. Part 3 Introduction to Maxwell's equations and the Yee algorithm: Maxwell's equations in three dimensions reduction to two dimensions equivalence to the wave equation in one dimension. Part 4 Numerical stability: TM mode time eigenvalue problem space eigenvalue problem extension to the full three-dimensional Yee algorithm. Part 5 Numerical dispersion: comparison with the ideal dispersion case reduction to the ideal dispersion case for special grid conditions dispersion-optimized basic Yee algorithm dispersion-optimized Yee algorithm with fourth-order accurate spatial differences. Part 6 Incident wave source conditions for free space and waveguides: requirements for the plane wave source condition the hard source total-field/scattered field formulation pure scattered field formulation choice of incident plane wave formulation. Part 7 Absorbing boundary conditions for free space and waveguides: Bayliss-Turkel scattered-wave annihilating operators Engquist-Majda one-way wave equations Higdon operator Liao extrapolation Mei-Fang superabsorption Berenger perfectly-matched layer (PML) absorbing boundary conditions for waveguides. Part 8 Near-to-far field transformation: obtaining phasor quantities via discrete fourier transformation surface equivalence theorem extension to three dimensions phasor domain. Part 9 Dispersive, nonlinear, and gain materials: linear isotropic case recursive convolution method linear gyrontropic case linear isotropic case auxiliary differential equation method, Lorentz gain media. Part 10 Local subcell models of the fine geometrical features: basis of contour-path FD-TD modelling the simplest contour-path subcell models the thin wire conformal modelling of curved surfaces the thin material sheet relativistic motion of PEC boundaries. Part 11 Explicit time-domain solution of Maxwell's equations using non-orthogonal and unstructured grids, Stephen Gedney and Faiza Lansing: nonuniform, orthogonal grids globally orthogonal global curvilinear co-ordinates irregular non-orthogonal unstructured grids analysis of printed circuit devices using the planar generalized Yee algorithm. Part 12 The body of revolution FD-TD algorithm, Thomas Jurgens and Gregory Saewert: field expansion difference equations for on-axis cells numerical stability PML absorbing boundary condition. Part 13 Modelling of electromagnetic fields in high-speed electronic circuits, Piket-May and Taflove. (part contents).

11,194 citations


"Surface-Enhanced Raman Spectroscopy..." refers methods in this paper

  • ...These methods include the discrete dipole approximation and the finite-difference time domain methods (37, 45, 46), and calculated results typically match well with experiment....

    [...]

Journal ArticleDOI
21 Feb 1997-Science
TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Abstract: Optical detection and spectroscopy of single molecules and single nanoparticles have been achieved at room temperature with the use of surface-enhanced Raman scattering. Individual silver colloidal nanoparticles were screened from a large heterogeneous population for special size-dependent properties and were then used to amplify the spectroscopic signatures of adsorbed molecules. For single rhodamine 6G molecules adsorbed on the selected nanoparticles, the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15 , much larger than the ensemble-averaged values derived from conventional measurements. This enormous enhancement leads to vibrational Raman signals that are more intense and more stable than single-molecule fluorescence.

9,609 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations