scispace - formally typeset
Search or ask a question
Posted Content

Survey: Image Mixing and Deleting for Data Augmentation

TL;DR: In this article, the authors provide a detailed review on these devised approaches, dividing augmentation strategies in three main categories cut and delete, cut and mix and mixup, and the second part of paper emprically evaluates these approaches for image classification, fine-grained image recognition and object detection.
Abstract: Data augmentation has been widely used to improve deep nerual networks performance. Numerous approaches are suggested, for example, dropout, regularization and image augmentation, to avoid over-ftting and enhancing generalization of neural networks. One of the sub-area within data augmentation is image mixing and deleting. This specific type of augmentation either mixes two images or delete image regions to hide or make certain characteristics of images confusing for the network to force it to emphasize on overall structure of object in image. The model trained with this approach has shown to perform and generalize well as compared to one trained without imgage mixing or deleting. Additional benefit achieved with this method of training is robustness against image corruptions. Due to its low compute cost and success in recent past, many techniques of image mixing and deleting are proposed. This paper provides detailed review on these devised approaches, dividing augmentation strategies in three main categories cut and delete, cut and mix and mixup. The second part of paper emprically evaluates these approaches for image classification, finegrained image recognition and object detection where it is shown that this category of data augmentation improves the overall performance for deep neural networks.
Citations
More filters
Posted Content
TL;DR: ChessMix as discussed by the authors proposes a data augmentation method focused on exploring the spatial context of remote sensing semantic segmentation, which creates new synthetic images from the existing training set by mixing transformed mini-patches across the dataset in a chessboardlike grid.
Abstract: Labeling semantic segmentation datasets is a costly and laborious process if compared with tasks like image classification and object detection. This is especially true for remote sensing applications that not only work with extremely high spatial resolution data but also commonly require the knowledge of experts of the area to perform the manual labeling. Data augmentation techniques help to improve deep learning models under the circumstance of few and imbalanced labeled samples. In this work, we propose a novel data augmentation method focused on exploring the spatial context of remote sensing semantic segmentation. This method, ChessMix, creates new synthetic images from the existing training set by mixing transformed mini-patches across the dataset in a chessboard-like grid. ChessMix prioritizes patches with more examples of the rarest classes to alleviate the imbalance problems. The results in three diverse well-known remote sensing datasets show that this is a promising approach that helps to improve the networks' performance, working especially well in datasets with few available data. The results also show that ChessMix is capable of improving the segmentation of objects with few labeled pixels when compared to the most common data augmentation methods widely used.

2 citations

Posted Content
TL;DR: In this article, the authors reviewed the latest augmentation and regularization methods for the image classification and explored ways to automatically choose some of the most important hyperparameters: total number of epochs, initial learning rate value and it's schedule.
Abstract: Nowadays deep learning-based methods have achieved a remarkable progress at the image classification task among a wide range of commonly used datasets (ImageNet, CIFAR, SVHN, Caltech 101, SUN397, etc.). SOTA performance on each of the mentioned datasets is obtained by careful tuning of the model architecture and training tricks according to the properties of the target data. Although this approach allows setting academic records, it is unrealistic that an average data scientist would have enough resources to build a sophisticated training pipeline for every image classification task he meets in practice. This work is focusing on reviewing the latest augmentation and regularization methods for the image classification and exploring ways to automatically choose some of the most important hyperparameters: total number of epochs, initial learning rate value and it's schedule. Having a training procedure equipped with a lightweight modern CNN architecture (like bileNetV3 or EfficientNet), sufficient level of regularization and adaptive to data learning rate schedule, we can achieve a reasonable performance on a variety of downstream image classification tasks without manual tuning of parameters to each particular task. Resulting models are computationally efficient and can be deployed to CPU using the OpenVINO toolkit. Source code is available as a part of the OpenVINO Training Extensions (this https URL).
References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

Book ChapterDOI
06 Sep 2014
TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

30,462 citations