scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Survey of active power line conditioning methodologies

TL;DR: Active power line conditioning (APLC) as mentioned in this paper is a line conditioning technique that can potentially correct network distortion caused by power electronic loads by injecting equal-but-opposite distortion at carefully selected points in a network.
Abstract: Active power-line conditioning (APLC) is a concept that can potentially correct network distortion caused by power electronic loads by injecting equal-but-opposite distortion at carefully selected points in a network. Results are presented of an extensive literary survey on the subject of APLCs. Thirty-seven key publications are identified and reviewed. Existing and proposed line-conditioning methodologies are compared, and a list of the advantages and limitations of each is presented. >
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a comprehensive review of active filter configurations, control strategies, selection of components, other related economic and technical considerations, and their selection for specific applications.
Abstract: Active filtering of electric power has now become a mature technology for harmonic and reactive power compensation in two-wire (single phase), three-wire (three phase without neutral), and four-wire (three phase with neutral) AC power networks with nonlinear loads. This paper presents a comprehensive review of active filter (AF) configurations, control strategies, selection of components, other related economic and technical considerations, and their selection for specific applications. It is aimed at providing a broad perspective on the status of AF technology to researchers and application engineers dealing with power quality issues. A list of more than 200 research publications on the subject is also appended for a quick reference.

2,311 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the present status of active filters based on state-of-the-art power electronics technology, and their future prospects and directions toward the 21st Century, including the personal views and expectations of the author.
Abstract: Attention has been paid to active filters for power conditioning which provide the following multifunctions: reactive power compensation; harmonic compensation; flicker/imbalance compensation; and voltage regulation. Active filters in a range of 50 kVA-60 MVA have been practically installed in Japan. In the near future, the term "active filters" will have a much wider meaning than it did in the 1970s. For instance, active filters intended for harmonic solutions are expanding their functions from harmonic compensation of nonlinear loads into harmonic isolation between utilities and consumers, and harmonic damping throughout power distribution systems. This paper presents the present status of active filters based on state-of-the-art power electronics technology, and their future prospects and directions toward the 21st Century, including the personal views and expectations of the author.

1,700 citations

Journal ArticleDOI
TL;DR: This paper presents an exhaustive review of three-phase improved power quality AC-DC converters configurations, control strategies, selection of components, comparative factors, recent trends, their suitability, and selection for specific applications.
Abstract: Solid-state switch-mode rectification converters have reached a matured level for improving power quality in terms of power-factor correction (PFC), reduced total harmonic distortion at input AC mains and precisely regulated DC output in buck, boost, buck-boost and multilevel modes with unidirectional and bidirectional power flow. This paper deals with a comprehensive review of improved power quality converters (IPQCs) configurations, control approaches, design features, selection of components, other related considerations, and their suitability and selection for specific applications. It is targeted to provide a wide spectrum on the status of IPQC technology to researchers, designers and application engineers working on switched-mode AC-DC converters. A classified list of more than 450 research publications on the state of art of IPQC is also given for a quick reference.

1,691 citations


Cites background from "Survey of active power line conditi..."

  • ...and hybrid filters [4], [7]–[9] along with conventional rectifiers have been extensively developed, especially in large rating and already existing installations....

    [...]

Journal ArticleDOI
05 Dec 2005
TL;DR: This paper deals with general pure active filters for power conditioning, and specific hybridactive filters for harmonic filtering of three-phase diode rectifiers.
Abstract: Unlike traditional passive harmonic filters, modern active harmonic filters have the following multiple functions: harmonic filtering, damping,isolation and termination, reactive-power control for power factor correction and voltage regulation, load balancing, voltage-flicker reduction, and/or their combinations. Significant cost reductions in both power semiconductor devices and signal processing devices have inspired manufactures to put active filters on the market. This paper deals with general pure active filters for power conditioning, and specific hybrid active filters for harmonic filtering of three-phase diode rectifiers.

954 citations


Cites background from "Survey of active power line conditi..."

  • ...Moreover, deeper interest in active filters has been spurred by • the emergence of semiconductor switching devices such as insulated-gate bipolar transistors (IGBTs) and power MOSFETs, which are characterized by fast switching capability and insulated-gate structure; • the availability of digital signal processors (DSPs), field-programmable gate arrays (FPGAs), analog-todigital (A/D) converters, Hall-effect voltage/current sensors, and operational and isolation amplifiers at reasonable cost [15]–[22]....

    [...]

Journal ArticleDOI
01 Sep 2000
TL;DR: There has been considerable interest in the development and applications of active filters because of the increasing concern over power quality, at both distribution and consumer levels, and the need to control reactive power and voltage stability at transmission levels as mentioned in this paper.
Abstract: There has been considerable interest in the development and applications of active filters because of the increasing concern over power quality, at both distribution and consumer levels, and the need to control reactive power and voltage stability at transmission levels. The existing approaches are classified and assessed to provide a framework of references for both researchers in this field and for generators, suppliers and consumers of electrical power who are, or may be, concerned about the problems associated with power quality and are considering installing active filters for their particular sets of problems.

668 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a new instantaneous reactive power compensator comprising switching devices is proposed, which requires practically no energy storage components, and is based on the instantaneous value concept for arbitrary voltage and current waveforms.
Abstract: The conventional reactive power in single-phase or three- phase circuits has been defined on the basis of the average value concept for sinusoidal voltage and current waveforms in steady states. The instantaneous reactive power in three-phase circuits is defined on the basis of the instantaneous value concept for arbitrary voltage and current waveforms, including transient states. A new instantaneous reactive power compensator comprising switching devices is proposed which requires practically no energy storage components.

3,331 citations

Journal ArticleDOI
TL;DR: In this article, the theoretical problem of eliminating harmonics in inverter-output waveforms was considered, and numerical techniques were applied to solve the nonlinear equations of the problem on the computer.
Abstract: This paper considers the theoretical problem of eliminating harmonics in inverter-output waveforms. Generalized methods are developed for eliminating a fixed number of harmonics in the half-bridge and full-bridge inverter-output waveforms, and solutions are presented for eliminating up to five harmonics. Numerical techniques are applied to solve the nonlinear equations of the problem on the computer. The uneliminated higher order harmonics can be easily attenuated by using filter circuits in the output stage of the inverter. The results show the feasibility of obtaining practically sinusoidal output waveforms, which are highly desirable in most inverter applications.

1,159 citations

Journal ArticleDOI
TL;DR: In this article, an active power filter with quadruple voltage-source PWM converters was developed, of which the power circuit consists of quadruple-VRS converters.
Abstract: The control strategy of active power filters using switching devices is proposed on the basis of the instantaneous reactive power theory. This aims at excellent compensation characteristics in transient states as well as steady states. The active power filter is developed, of which the power circuit consists of quadruple voltage-source PWM converters. As the result, interesting compensation characteristics were verified experimentally which could not be obtained by the active power filter based on the conventional reactive power theory.

722 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived theoretical techniques of voltage control for the half-bridge and full-bridge inverters based on the results in [1] and [2].
Abstract: Theoretical techniques of voltage control for the half-bridge and full-bridge inverters are derived based on the results in [1]. Detailed analytical results for the symmetrical pulsewidth modulation method of voltage control are also presented. Voltage control techniques are derived whereby harmonic elimination is possible in variable-frequency variable-voltage three-phase inverter circuits. The technique for the half-bridge inverter is optimized subject to the constraint of switching frequency of the SCR's, using the concepts of modern control theory. Variable-frequency variable-voltage sinusoidal output in three-phase inverters is possible by employing the techniques developed. The methods show great promise in application to variable-speed ac motor drive systems.

495 citations

01 Jan 1976

469 citations