scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Survey on Recent Designs of Compliant Micro-/Nano-Positioning Stages

11 Feb 2018-Actuators (Multidisciplinary Digital Publishing Institute)-Vol. 7, Iss: 1, pp 5
TL;DR: This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years and involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization.
Abstract: Micromanipulation is a hot topic due to its enabling role in various research fields. In order to perform a high precision operation at a small scale, compliant mechanisms have been proposed and applied for decades. In microscale manipulation, micro-/nano-positioning is the most fundamental operation because a precision positioning is the premise of subsequent operations. This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years. It involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization. The review provides a reference to design a compliant micro-/nano-positioning stage for pertinent applications.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of electrothermal micro-actuators and applications is presented in this paper, where the three main configurations of electro-thermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph.
Abstract: This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several advantages when compared with the other types of actuation approaches based on electrostatic and piezoelectric principles. The electrothermal method offers flexibility in the choice of materials, low-cost fabrication, and large displacement capabilities. The three main configurations of electrothermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph types as well as a few other unconventional actuation approaches. Within each type, trends are outlined from the basic concept and design modifications to applications which have been investigated in order to enhance the performance or to overcome the limitations of the previous designs. It provides a grasp of the actuation methodology, design, and fabrication, and the related performance and applications in cell manipulation, micro assembly, and mechanical testing of nanomaterials, Radio Frequency (RF) switches, and optical Micro-Electro-Mechanical Systems (MEMS).

66 citations

Journal ArticleDOI
TL;DR: The summary and classification of the actuation modes used in the multi-DOF piezoelectric motion stages are presented and the output performances of the stages are compared, and the state of the arts of the stage are discussed and summarized.
Abstract: Multi-degree-of-freedom (multi-DOF) piezoelectric motion stage is an important part of modern manufacturing industry. In order to perform high precision outputs in a large travel range, various multi-DOF piezoelectric motion stages have been proposed and applied for decades. This paper is concentrated on reviewing the research on a piezoelectric motion stage. It involves the major components, operating principles of different actuation modes, design schemes, and structures of the multi-DOF piezoelectric motion stages. In this paper, the summary and classification of the actuation modes used in the multi-DOF piezoelectric motion stages are presented, mainly including the resonance actuation mode, inertial actuation mode, clamping and feeding actuation mode, and direct actuation mode; the multi-DOF piezoelectric motion stage is divided into multi-actuator type and single-actuator type according to the number of actuators used in the motion stage, in which the multi-actuator type includes series, parallel, and series–parallel types from the viewpoint of structure mechanism; in addition, the output performances of the stages are compared, and the state of the arts of the stages are discussed and summarized; the further efforts and future research perspectives are highlighted.

51 citations


Cites background from "Survey on Recent Designs of Complia..."

  • ...In 2018, Wu and Xu [42] gave a survey on recent designs of the micro-/nano-positioning stages, where the compliant amplification mechanism was summarized....

    [...]

Journal ArticleDOI
TL;DR: A compact flexure-based stage which can be mounted on the top of an XY stage for constructing a hybrid type of XYZ stage dedicated to micro/nanopositioning applications and provides a more flexible solution than serial- and parallel-kinematic designs.
Abstract: This paper presents the design of a new compact one-degree-of-freedom (1-DOF) compliant stage driven by a piezoelectric actuator (PEA) for micro/nanopositioning in the vertical direction. An orthogonal compound bridge-type amplifier is introduced to amplify the displacement of the PEA. It significantly reduces the height of the stage and leads to a compact design. By analytical modeling of the mechanism, the design variables are determined, which are then optimized via the multiobjective genetic algorithm based on the finite-element analysis. Simulation results show that the 1-DOF stage is able to provide the maximum displacement of $181.18~\mu \text{m}$ in theory, which is more than $12\times $ the input displacement of PEA. Payload test results indicate that the stage can support a maximum load of about 80 N. Comparison study reveals that the presented vertical positioning stage offers a more compact structure than existing ones. A prototype is fabricated for experimental studies, and the deviation between the experimental and simulation results is discussed in detail. Moreover, closed-loop performance test exhibits a resolution of 10 nm for the developed vertical positioning stage. Note to Practitioners —The motivation of this paper is to devise a compact flexure-based stage, which can be mounted on the top of an XY stage for constructing a hybrid type of XYZ stage dedicated to micro/nanopositioning applications. Such a design scheme provides a more flexible solution than serial- and parallel-kinematic designs. In order to fulfill the design requirement and to improve the compactness and output directionality of the stage, a series of design processes is conducted. The design parameters are optimized and the optimal design leads to the stage dimension of 58 mm $\times20$ mm $\times15.5$ mm (length $\times $ width $\times $ height), which offers a motion range of $97.32~\mu \text{m}$ as verified by the experimental study. In consideration of the motion range and physical size, the proposed stage offers a more compact structure than available designs. Experimental results demonstrate the fine performance of the developed prototype stage for vertical micro/nanopositioning.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM and provided a guideline on further development of the micro gripper.
Abstract: The piezoelectric-actuated compliant microgripper (PEACM) plays an essential role in the application fields such as biomedical engineering, microelectronics, and optical engineering. As compared with other categories of grippers, PEACM exhibits the advantages of high accuracy of displacement, large power to weight ratio, low energy consumption, and fast response speed. This paper reviews the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM. First, the gripper's performance indices and classifications are elaborated, which is beneficial to determine the design goal. Then, the compliant mechanisms adopted in the microgripper design are discussed, including the flexible hinge, displacement amplifier, and guiding mechanism. In addition, the optimization and modeling methods of the microgripper are presented. Popular types of position/force sensors and different displacement/force control strategies employed in the microgripper are surveyed. Moreover, the prospect on future development trend of the PEACM is discussed. The paper provides the reader with an overview of the recent advances on PEACM design and also a guideline on further development of the microgripper.

32 citations

Journal ArticleDOI
TL;DR: A novel two-stage compliant constant force microgripper is proposed, based on the negative stiffness effect, connected in parallel with a two- stage negative stiffness module and a positive stiffness module to derive kinetostatic and dynamic performances.
Abstract: The manipulating objects of the micron scale are easily damaged, hence the microgrippers, the key components in micro manipulating systems, demand precise force control, plus miniaturized size. Consequently, the constant force microgrippers, generally lack the ability to fit different sizes. To avoid the overload damage, apply multi-size microparts and simplify the control method, a novel two-stage compliant constant force microgripper is proposed in this paper. Based on the negative stiffness effect, this gripper is connected in parallel with a two-stage negative stiffness module and a positive stiffness module. Then, the elliptic integral method and the pseudo-rigid-body method are both employed to derive the kinetostatic and dynamic performances. Finally, the analytical results are validated. It is observed that two-stage constant forces of 1.33 N in 305.6 μm and 1.11 N in 330.8 μm are acquired.

23 citations

References
More filters
Book
01 Jan 2002
TL;DR: In this paper, a comparison of top-down and bottom-up manufacturing methods for micro-manufacturing is presented, with a focus on the use of micro-processors.
Abstract: LITHOGRAPHY Introduction Historical Note: Lithography's Origins Photolithography Overview Critical Dimension, Overall Resolution, Line-Width Lithographic Sensitivity and Intrinsic Resist Sensitivity (Photochemical Quantum Efficiency) Resist Profiles Contrast and Experimental Determination of Lithographic Sensitivity Resolution in Photolithography Photolithography Resolution Enhancement Technology Beyond Moore's Law Next Generation Lithographies Emerging Lithography Technologies PATTERN TRANSFER WITH DRY ETCHING TECHNIQUES Introduction Dry Etching: Definitions and Jargon Plasmas or Discharges Physical Etching: Ion Etching or Sputtering and Ion-Beam Milling Plasma Etching (Radical Etching) Physical/Chemical Etching PATTERN TRANSFER WITH ADDITIVE TECHNIQUES Introduction Silicon Growth Doping of Si Oxidation of Silicon Physical Vapor Deposition Chemical Vapor Deposition Silk-Screening or Screen-Printing Sol-Gel Deposition Technique Doctors' Blade or Tape Casting Plasma Spraying Deposition and Arraying Methods of Organic Layers in BIOMEMS Thin versus Thick Film Deposition Selection Criteria for Deposition Method WET BULK MICROMACHINING Introduction Historical Note Silicon Crystallography Silicon As Substrate Silicon As A Mechanical Element In MEMS Wet Isotropic And Anisotropic Etching Alignment Patterns Chemical Etching Models Etching With Bias And/Or Illumination Of The Semiconductor Etch-Stop Techniques Problems With Wet Bulk Micromachining SURFACE MICROMACHINING Introduction Historical Note Mechanical Properties of Thin Films Surface Micromachining Processes Poly-Si Surface Micromachining Modifications Non-Poly-Si Surface Micromachining Modifications Materials Case Studies LIGA AND MICROMOLDING Introduction LIGA-Background LIGA and LIGA-Like Process Steps A COMPARISON OF MINIATURIZATION TECHNIQUES: TOP-DOWN AND BOTTOM-UP MANUFACTURING Introduction Absolute and Relative Tolerance in Manufacturing Historical Note: Human Manufacturing Section I: Top-Down Manufacturing Methods Section II: Bottom-Up Approaches MODELING, BRAINS, PACKAGING, SAMPLE PREPARATION AND NEW MEMS MATERIALS Introduction Modeling Brains In Miniaturization Packaging Substrate Choice SCALING, ACTUATORS, AND POWER IN MINIATURIZED SYSTEMS Introduction Scaling Actuators Fluidics Scaling In Analytical Separation Equipment Other Actuators Integrated Power MINIATURIZATION APPLICATIONS Introduction Definitions and Classification Method Decision Three OVERALL MARKET For MICROMACHINES Introduction Why Use Miniaturization Technology ? From Perception to Realization Overall MEMS Market Size MEMS Market Character MEMS Based on Si Non-Silicon MEMS MEMS versus Traditional Precision Engineering The Times are a'Changing APPENDICES Metrology Techniques WWW Linkpage Etch Rate for Si, SiO2 Summary of Top-Down Miniaturization Tools Listing of names of 20 amino acids & their chemical formulas Genetic code Summary of Materials and Their Properties for Microfabrication References for Detailed Market Information on Miniature Devices MEMS Companies Update Suggested Further Reading Glossary Symbols used in Text INDEX Each chapter also contains sections of examples and problems

1,930 citations


"Survey on Recent Designs of Complia..." refers background in this paper

  • ...In general, due to its bulky size and difficulty in fabrication, EMA is considered if a relative large stroke (in the millimeter or centimeter scale) is required [25,26]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a method for optimal design of compliant mechanism topologies based on continuum-type topology optimization techniques and find the optimal mechanism topology within a given design domain and a given position and direction of input and output forces.
Abstract: This paper presents a method for optimal design of compliant mechanism topologies. The method is based on continuum-type topology optimization techniques and finds the optimal compliant mechanism topology within a given design domain and a given position and direction of input and output forces. By constraining the allowed displacement at the input port, it is possible to control the maximum stress level in the compliant mechanism. The ability of the design method to find a mechanism with complex output behavior is demonstrated by several examples. Some of the optimal mechanism topologies have been manufactured, both in macroscale (hand-size) made in Nylon, and in microscale (<.5mm)) made of micromachined glass.

1,282 citations


"Survey on Recent Designs of Complia..." refers methods in this paper

  • ...To improve the performance from the root, researchers have used topology optimization to design new compliant mechanisms starting from the end of the 20th Century [123,124]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors map available additive manufacturing methods based on their process mechanisms, review modelling approaches based on modelling methods and identify research gaps and implications for closed-loop control of the process.
Abstract: Additive manufacturing is a technology rapidly expanding on a number of industrial sectors. It provides design freedom and environmental/ecological advantages. It transforms essentially design files to fully functional products. However, it is still hampered by low productivity, poor quality and uncertainty of final part mechanical properties. The root cause of undesired effects lies in the control aspects of the process. Optimization is difficult due to limited modelling approaches. Physical phenomena associated with additive manufacturing processes are complex, including melting/solidification and vaporization, heat and mass transfer etc. The goal of the current study is to map available additive manufacturing methods based on their process mechanisms, review modelling approaches based on modelling methods and identify research gaps. Later sections of the study review implications for closed-loop control of the process.

984 citations


"Survey on Recent Designs of Complia..." refers background in this paper

  • ...To manufacture complex structure as an integral object with high precision, additive manufacturing (AM) has the greatest potential, e.g., selective laser sintering (SLS), selective laser melting (SLM), direct metal laser sintering (DMLS) and laser engineered net shaping (LENS) [137]....

    [...]

  • ..., selective laser sintering (SLS), selective laser melting (SLM), direct metal laser sintering (DMLS) and laser engineered net shaping (LENS) [137]....

    [...]

Book
Nadim Maluf1
30 Nov 2000
TL;DR: The main aim is to provide an introduction to MEMS by describing the processes and materials available and by using examples of commercially available devices, and the concept of using MEMS devices as key elements within complex systems (or even microsystems!) is explored.
Abstract: If you've not been involved in MEMS (MicroElectroMechanical Systems) technology or had the cause to use MEMS devices, then you may wonder what all the fuss is about. What are MEMS anyway? What's the difference between MEMS and MST (MicroSystems Technology)? What are the advantages over existing technologies? If you have ever found yourself pondering over such questions, then this book may be for you. As the title suggests, the main aim is to provide an introduction to MEMS by describing the processes and materials available and by using examples of commercially available devices. The intended readership are those technical managers, engineers, scientists and graduate students who are keen to learn about MEMS but have little or no experience of the technology. I was particularly pleased to note that Maluf has dedicated a whole chapter to the important (and often difficult) area of packaging. The first three chapters provide a general overview of the technology. Within the first three pages we are introduced to the MEMS versus MST question, only to discover that the difference depends on where you live! The United States prefer MEMS, while the Europeans use the handle MST. (Note to self: tell colleagues in MEMS group at Southampton). A good account is given of the basic materials used in the technology, including silicon, silicon oxide/nitride/carbide, metals, polymers, quartz and gallium arsenide. The various processes involved in the creation of MEMS devices are also described. A good treatment is given to etching and bonding in addition to the various deposition techniques. It was interesting to note that the author doesn't make a big issue of the differences between bulk and surface micromachined devices; the approach seems to be `here's your toolbag - get on with it'. One of the great strengths of this book is the coverage of commercial MEMS structures. Arising as they have, from essentially a planar technology, MEMS devices are often elaborate three-dimensional creations, and 2D drawings don't do them much justice. I have to say that I was extremely impressed with the many aesthetic isometric views of some of these wonderful structures. Pressure sensors, inkjet print nozzles, mass flow sensors, accelerometers, valves and micromirrors are all given sufficient treatment to describe the fundamental behaviour and design philosophy, but without the mathematical rigour expected for a traditional journal paper. Chapter 5 addresses the promise of the technology as a means of enabling a new range of applications. The concept of using MEMS devices as key elements within complex systems (or even microsystems!) is explored. The so-called `lab-on-a-chip' approach is described, whereby complex analytical systems are integrated onto a single chip together with the associated micropumps and microvalves. The design and fabrication of MEMS devices are important issues by themselves. A key area, often overlooked, is that of packaging. Painstaking modelling and intricate fabrication methodologies can produce resonator structures oscillating at precisely, say, 125 kHz. The device is then mounted in a dual-in-line carrier and the frequency shifts by 10 kHz because of the additional internal stresses produced. Packaging issues can't be decoupled from those of the micromachined components. Many of these issues, such as protective coatings, thermal management, calibration etc, are covered briefly in the final chapter. Overall, I found this book informative and interesting. It has a broad appeal and gives a good insight into this fascinating and exciting subject area. Neil White

770 citations


"Survey on Recent Designs of Complia..." refers background in this paper

  • ...The piezoelectric actuator (PEA) is a kind of actuator based on the reverse piezoelectric effect of ionic crystals [46], i....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the performance of microelectromechanical systems (MEMS) actuators and sensors as a function of operating principle is compared with each other and with equivalent macroscopic devices.
Abstract: This paper presents an exercise in comparing the performance of microelectromechanical systems (MEMS) actuators and sensors as a function of operating principle. Data have been obtained from the literature for the mechanical performance characteristics of actuators, force sensors and displacement sensors. On-chip and off-chip actuators and sensors are each sub-grouped into families, classes and members according to their principle of operation. The performance of MEMS sharing common operating principles is compared with each other and with equivalent macroscopic devices. The data are used to construct performance maps showing the capability of existing actuators and sensors in terms of maximum force and displacement capability, resolution and frequency. These can also be used as a preliminary design tool, as shown in a case study on the design of an on-chip tensile test machine for materials in thin-film form.

395 citations


"Survey on Recent Designs of Complia..." refers background in this paper

  • ...Furthermore, a detailed survey about the performance and selection of actuators can be found in [19]....

    [...]