scispace - formally typeset
Search or ask a question
Journal ArticleDOI

SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM

01 Jun 2013-Computer Physics Communications (North-Holland)-Vol. 184, Iss: 6, pp 1605-1617
TL;DR: The code SusHi is described, which calculates the cross sections p p / p p ¯ → ϕ + X in gluon fusion and bottom-quark annihilation in the SM and the MSSM, where ϕ is any of the neutral Higgs bosons within these models.
About: This article is published in Computer Physics Communications.The article was published on 2013-06-01 and is currently open access. It has received 443 citations till now. The article focuses on the topics: Personal computer & Minimal Supersymmetric Standard Model.
Citations
More filters
BookDOI
04 Jul 2013
TL;DR: In 2012 and the first half of 2013, the LHC Higgs Cross Section Working Group as mentioned in this paper presented the state of the art of Higgs physics at the Large Hadron Collider (LHC), integrating all new results that have appeared in the last few years.
Abstract: This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.

778 citations

Posted ContentDOI
TL;DR: In 2012 and the first half of 2013, the LHC Higgs Cross Section Working Group as mentioned in this paper presented the state of the art of Higgs physics at the Large Hadron Collider (LHC), integrating all new results that have appeared in the last few years.
Abstract: This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.

581 citations


Cites background or methods from "SusHi: A program for the calculatio..."

  • ...The program SUSHI [641,642] has implemented the calculation of neutral Higgs bosons h,H,A within the 2HDM through gluon fusion and bottom quark annihilation....

    [...]

  • ...Luckily, in the past couple of years significant progress has been made in combining the existing theoretical results for the quark, squark, and gluino contributions into a consistent numerical prediction [77, 641]....

    [...]

  • ...To compute the total cross section we use SUSHI [641], and cross-check the results with a private code....

    [...]

  • ...3 we use the public code SUSHI [641] and the POWHEG implementation of Ref....

    [...]

  • ...In this report we will use the public code SUSHI [641] to provide a state-ofthe-art determination of the total inclusive cross section for gluon fusion, as well as for bottom-quark...

    [...]

Journal ArticleDOI
TL;DR: A substantial reduction in the scale dependence is observed, with overlap between the current and previous order prediction, in the standard model Higgs boson pair production inclusive cross section at hadron colliders within the large top-mass approximation.
Abstract: We compute the next-to-next-to-leading order QCD corrections for standard model Higgs boson pair production inclusive cross section at hadron colliders within the large top-mass approximation. We provide numerical results for the LHC, finding that the corrections are large, resulting in an increase of $\mathcal{O}(20%)$ with respect to the next-to-leading order result at c.m. energy $\sqrt{{s}_{H}}=14\text{ }\text{ }\mathrm{TeV}$. We observe a substantial reduction in the scale dependence, with overlap between the current and previous order prediction. All our results are normalized using the full top- and bottom-mass dependence at leading order. We also provide analytical expressions for the $K$ factors as a function of ${s}_{H}$.

298 citations

Journal ArticleDOI
TL;DR: The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs Boson decays, using multiple production and decay channels with up to 4.7 fb(-1) of...
Abstract: The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb(-1) of ...

271 citations

Journal ArticleDOI
TL;DR: In this article, a search for heavy neutral Higgs bosons and Z' bosons was performed using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) from proton-proton collisions at root s = 13 TeV reco...
Abstract: A search for heavy neutral Higgs bosons and Z' bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) from proton-proton collisions at root s = 13 TeV reco ...

256 citations

References
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Journal ArticleDOI
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.

8,857 citations

Journal ArticleDOI
Kaoru Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, P. R. Burchat4, C. D. Carone5, C. Caso6, G. Conforto7, Olav Dahl3, Michael Doser8, Semen Eidelman9, Jonathan L. Feng10, L. K. Gibbons11, M. C. Goodman12, Christoph Grab13, D. E. Groom3, Atul Gurtu8, Atul Gurtu14, K. G. Hayes15, J.J. Hernández-Rey16, K. Honscheid17, Christopher Kolda18, Michelangelo L. Mangano8, D. M. Manley19, Aneesh V. Manohar20, John March-Russell8, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama3, Hitoshi Murayama21, S. Sánchez Navas13, Keith A. Olive22, Luc Pape8, C. Patrignani6, A. Piepke23, Matts Roos24, John Terning25, Nils A. Tornqvist24, T. G. Trippe3, Petr Vogel26, C. G. Wohl3, Ron L. Workman27, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso28, D. Asner29, K. S. Babu30, E. L. Barberio8, Marco Battaglia8, H. Bichsel31, O. Biebel32, P. Bloch8, Robert N. Cahn3, Ariella Cattai8, R.S. Chivukula33, R. Cousins34, G. A. Cowan35, Thibault Damour36, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira37, Jens Erler38, V. V. Ezhela, A Fassò8, W. Fetscher13, Brian D. Fields39, B. Foster40, Daniel Froidevaux8, Masataka Fukugita41, Thomas K. Gaisser42, L. A. Garren37, H J Gerber13, Frederick J. Gilman43, Howard E. Haber44, C. A. Hagmann29, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan31, G. Höhler45, P. Igo-Kemenes46, John David Jackson3, Kurtis F Johnson47, D. Karlen48, B. Kayser37, S. R. Klein3, Konrad Kleinknecht49, I.G. Knowles50, P. Kreitz4, Yu V. Kuyanov, R. Landua8, Paul Langacker38, L. S. Littenberg51, Alan D. Martin52, Tatsuya Nakada53, Tatsuya Nakada8, Meenakshi Narain33, Paolo Nason, John A. Peacock54, H. R. Quinn55, Stuart Raby17, Georg G. Raffelt32, E. A. Razuvaev, B. Renk49, L. Rolandi8, Michael T Ronan3, L.J. Rosenberg54, C.T. Sachrajda55, A. I. Sanda56, Subir Sarkar57, Michael Schmitt58, O. Schneider53, Douglas Scott59, W. G. Seligman60, M. H. Shaevitz60, Torbjörn Sjöstrand61, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner62, Mark Srednicki63, Achim Stahl, Todor Stanev42, M. Suzuki3, N. P. Tkachenko, German Valencia64, K. van Bibber29, Manuella Vincter65, D. R. Ward66, Bryan R. Webber66, M R Whalley52, Lincoln Wolfenstein43, J. Womersley37, C. L. Woody51, Oleg Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Genoa6, University of Urbino7, CERN8, Budker Institute of Nuclear Physics9, University of California, Irvine10, Cornell University11, Argonne National Laboratory12, ETH Zurich13, Tata Institute of Fundamental Research14, Hillsdale College15, Spanish National Research Council16, Ohio State University17, University of Notre Dame18, Kent State University19, University of California, San Diego20, University of California, Berkeley21, University of Minnesota22, University of Alabama23, University of Helsinki24, Los Alamos National Laboratory25, California Institute of Technology26, George Washington University27, Syracuse University28, Lawrence Livermore National Laboratory29, Oklahoma State University–Stillwater30, University of Washington31, Max Planck Society32, Boston University33, University of California, Los Angeles34, Royal Holloway, University of London35, Université Paris-Saclay36, Fermilab37, University of Pennsylvania38, University of Illinois at Urbana–Champaign39, University of Bristol40, University of Tokyo41, University of Delaware42, Carnegie Mellon University43, University of California, Santa Cruz44, Karlsruhe Institute of Technology45, Heidelberg University46, Florida State University47, Carleton University48, University of Mainz49, University of Edinburgh50, Brookhaven National Laboratory51, Durham University52, University of Lausanne53, Massachusetts Institute of Technology54, University of Southampton55, Nagoya University56, University of Oxford57, Northwestern University58, University of British Columbia59, Columbia University60, Lund University61, University of Sheffield62, University of California, Santa Barbara63, Iowa State University64, University of Alberta65, University of Cambridge66
TL;DR: The Particle Data Group's biennial review as mentioned in this paper summarizes much of particle physics, using data from previous editions, plus 2658 new measurements from 644 papers, and lists, evaluates, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, V-cb & V-ub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

4,465 citations

Journal ArticleDOI
TL;DR: In this article, the e + e − → μ + μ − cross section including all the one-loop radiative corrections in the context of the Weinberg model is presented.

2,193 citations


Additional excerpts

  • ...The latter are implemented in SusHi by expressing them in terms of Passarino-Veltman functions [96], see Ref....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors focused on the mechanism of electroweak symmetry breaking and the fundamental properties of the Higgs particle of the Standard Model and its decay modes and production mechanisms at hadron colliders and at future lepton colliders.

1,352 citations


Additional excerpts

  • ...[33, 34]....

    [...]